1 2 3	William J. Brunick, Esq. (State Bar No 46289) Leland P. McElhaney, Esq. (State Bar No. 39297) BRUNICK, McELHANEY& KENNEDY PLC 1839 Commercenter West P.O. Box 13130 San Bernardino, California 92423-3130	NO FEE PER GOV'T. CODE SEC. 6103
4	Telephone: (909) 889-8301 Facsimile: (909) 388-1889	
5	E-Mail: bbrunick@bmklawplc.com E-Mail: lmcelhaney@bmklawplc.com	
6 7	Attorneys for Defendant/Cross-Complainant MOJAVE WATER AGENCY	
8	SUPERIOR COURT OF THE	E STATE OF CALIFORNIA
9	IN AND FOR THE COU	
10	IN AND FOR THE COC	ONT OF RIVERSIDE
11 12	Coordination Proceeding Special Title (Cal. Rules of Court, Rule 3.550)	CASE NO.: CIV 208568 / JCCP5265
13	MOJAVE BASIN WATER CASES	Dept. 1. Riverside Superior Court Hon. Craig G. Riemer, Retired
14	CITY OF BARSTOW, et al.,	WATERMASTER ENGINEER'S
15	Plaintiff,	STATEMENT OF REASONS FOR RECOMMENDING 2001-2020 BASE PERIOD
16	v.)	PERIOD
17	CITY OF ADELANTO, et al.,	Dont . 1
18	Defendant.	Dept.: 1 Honorable Craig G. Riemer, Retired, Judge Presiding
19	AND RELATED CROSS ACTIONS)	
20	<u> </u>	
21		
22	DECLARATION OF ROBE	ERT C. WAGNER
23	I, Robert C. Wagner, declare and state as foll	lows:
24	I am a licensed Civil Engineer in the State of	California and President of the firm of Wagner and
25	Bonsignore, Consulting Civil Engineers in Sacrame	ento, California. I serve in the capacity of Engineer
26	g , g :: zuotumo	,
27		

for the Mojave Basin Area Watermaster in performance of its duties. I have personal knowledge of the matters set forth herein and, if called as a witness, I could and would testify competently thereto.

DWR Bulletin 84 guidance on the selection of a hydrologic base period.

The applicable hydrologic base period to be used to implement the terms of the Judgment is not defined in the Judgment. However, in January 1996, when judgment was entered in *City of Barstow v*. *City of Adelanto*, the Watermaster, the Court, and the Parties relied upon a study published in 1967 by the California Department of Water Resources (DWR), titled DWR Bulletin 84 (trial exhibit number 4006), a copy of which is attached as **Exhibit A** hereto. The Forward to that study states:

This investigation and report are the result of the recognition by the Mojave Water Agency of its need for reliable information on existing water resources, future water requirements, and sources of additional water supply to meet the needs for growth of the region it serves. Accordingly, the agency, through its legislative representatives, obtained state funds for the Department of Water Resources to undertake this investigation . . .

To provide interested agencies and persons with information as soon as it was available, informal meetings were held and two progress reports were published by the Department of Water Resources.

The results of this study show that additional water will be required if the Mojave region is to realize its growth potential. The meager rainfall and increasing water demands of the area indicate the need for a plan of basin operation that will take full advantage of existing and potential water resources, including ground water, imported water, and the use of the ground water basins for both storage and distribution of water.

The information provided by this study points out the need and provides a foundation for a ground water basin model simulation and operational and economic studies, leading to the selection by local agencies of an optimum plan of water resources management.

Bulletin 84 provides the following guidance as to precipitation serving as an index of the water supply (**Exhibit A**, p. 47):

In any watershed, precipitation is the original source of local water supply; therefore, the amount of precipitation to a groundwater basin and its tributary areas serve as an index of the water supply available to that basin. . . .

Bulletin 84 also provides the following guidance regarding the criteria to be used for selecting a long-term base period (**Exhibit A**, pp. 47-48):

The base period conditions should be reasonably representative of long-time hydrologic conditions and should include both normal and extreme wet and dry years. Both the beginning and the end of the base period should be preceded by a series of wet years or a series of dry years, so that the difference between the amount of water in transit within the zone of aeration at the beginning and end of the base period would be a minimum. The base period should also be within the period of available records and should include recent cultural conditions as an aid for projections under future basin operational studies.

. . .

On the basis of the criteria stated in preceding paragraphs, the water years 1936-37 through 1960-61 were chosen as the base hydrologic period. This 25-year period includes the most recent pair of wet and dry cycles; has an average annual precipitation (at Squirrel Inn No. 2) of 40.7 inches, which closely approximates the estimated long-time period average of 41.7 inches;

begins and ends after a series of dry years; is within the period of available data; and includes recent land use conditions.

The Los Angeles vs. San Fernando case

Similar criteria for selecting a hydrologic base period was adopted in *City of Los Angeles vs. City of San Fernando, et al.*, 14 Cal.3d 199 (1975), which is consistent with the SGMA definition of sustainable yield (Water Code Section 10721(v)). In *City of Los Angeles v. City of San Fernando, the* State Water Rights Board approved and adopted the Report of Referee dated July 1962 pursuant to the requirements of the Court's Order of Reference. **Exhibit B** hereto are excerpts from volume 1 of the July, 1962 State Water Rights Board "Report of Referee," filed in *City of Los Angeles v. City of San Fernando*.

In the selection of a base study period, the Los Angeles vs. San Fernando case states the base period corresponds to the one with precipitation similar to the long-term period of record 1872-73 through 1956-57. The Report of Referee (1962) also stated the following:

The desirable base study period is one during which precipitation characteristics in the Upper Los Angeles River area approximate the 85-year period of record, 1872-73 through 1956-57. A further requirement of such a period is that additional hydrologic information is available sufficient to permit an evaluation of the amount, occurrence and disposal of the normal water supply under recent culture conditions. The desirable base period includes both wet and dry periods similar in magnitude and occurrence to the normal supply, and during which there are sufficient measurements and observations to relate the hydrology to recent culture.

(**Exhibit B**, p. 182; emphasis added.)

Based on the above, the 29-year base period of 1929 through 1957 was selected for the following reasons (Report of Referee, pp. 72-73, filed with the Trial Court):

1.	It was a period of normal precipitation, and sufficient records were available to calculate safe
	vield.

- 2. It was a representative period of normal precipitation including a series of wet and dry years similar in magnitude and occurrence to the long-term average supply conditions of 1872-73 to 1956-57. The average annual precipitation during these 29 years closely matched the long-term average, with only minor deviations.
- 3. The years preceding the first and last years of this period were drier than normal, thereby reducing unaccounted water in transit toward the water table at the start or end of the period.
- 4. It included years with water supply and disposal patterns under cultural conditions similar to those in 1949–50, 1954–55, and 1957–58, the years used for determining safe yield.

There are several similarities between the criteria for selection of a base period described in the Report of Referee (1962) by the State Water Rights Board and the guidance from DWR Bulletin 84.

The similarities in the criteria for a base period selection between DWR Bulletin 84 and City of Los Angeles vs. City of San Fernando are summarized as follows:

- Be representative (similar) to average long-term conditions of supply.
- Include a series of wet and dry years.
- Be based upon sufficient records depicting hydrologic conditions.
- Beginning and end of base periods are below normal (dry).
- Include periods of recent cultural conditions.

(**Exhibit B**, pp. 183-184)

Initial Hydrologic Base Period 1931-1990

Based upon DWR's guidance in Bulletin 84, the Parties and the Court in *City of* Barstow determined the initial hydrologic base period should be from 1931 to 1990, because it includes both normal and extreme wet and dry years, and meets the other requirements set forth in Bulletin 84.

22

23

24

25

26

27

Therefore, after January 10, 1996 (when the Judgment was entered), the hydrologic base period from 1931 to 1990 was accepted by the Parties as the applicable long-term hydrologic base period for purposes of implementing the Judgment.

The hydrologic base period is important because the production safe yield (PSY) requires a finite time period for evaluation. With pertinent information from the selected hydrologic base period, Watermaster determines PSY based on an estimate of consumptive uses and production to determine the amount of water that the Parties are required to purchase. The Judgment is intended as a funding mechanism so that those that pump more than their FPA will be required to purchase Replacement Water from Watermaster for recharge in a given subarea.

As indicated in Bulletin 84, the selected hydrologic base period should include recent cultural conditions, because those conditions are directly related to consumptive use and return flow which, in turn, directly impact water supply. The Court's Amended Statement of Decision in this proceeding acknowledges the importance of the cultural conditions: "Production Safe Yield is always based on a particular cultural condition." (Statement of Decision, C. 2.).

However, the "cultural conditions" for water use and disposal during the 1931-1990 hydrologic base period are not representative of recent cultural conditions. Watermaster has compiled land use data, historical pumping and irrigated acreages for the last 30 years. The following sections explain the changes in cultural conditions since 1990.

A. Changes in land uses

Changes over time are significant and must be considered. City of Los Angeles v. City of San Fernando notes: "The trial court found . . . that since the entry of the former judgment 'the culture of the area within the San Fernando Basin . . . has been transformed from essentially rural and agricultural to a highly developed urban society ' Much of the land formerly devoted to irrigated crops has been

covered by residential and commercial development." (*Id*, 14 Cal.3d at 258). A similar transformation has occurred in the Mojave Basin Area.

Exhibit C shows the 30-year changes in land use for each subarea. The National Land Cover Database (NLCD) is a product of the U.S. Geological Survey and provides nation-wide data on land cover and land cover changes in a 30-meter resolution. The NLCD dataset provides spatial reference and descriptive data for characteristics of the land surface such as developed areas, percent of impervious surfaces, and percent of tree canopy cover. The NLCD Land Cover dataset is represented categorically by 16 different land cover class codes. For purposes of evaluating land use changes in the Basin Area, Watermaster focused on two land cover classifications: "Developed" (shown as various shades of red colors for the different levels of development) and "Cultivated Crops" (class code 82, shown with a brown color and representing agricultural land).

The NLCD dataset for Alto Subarea (Exhibit C, p. 188) indicates a significant decrease in the land cover classified as "Cultivated Crops" from 1990 to 2020. The agricultural land use in Alto upstream of the Lower Narrows has disappeared, and agricultural land use in the Transition Zone was greatly reduced during that 30-year period. On the other hand, the developed areas in the Alto Subarea have extended and increased over that 30-year period, corresponding to the substantial growth in residential areas which are now sewered. The change in developed areas in the Alto Subarea is also evidenced by the flow patterns of the treated wastewater discharges by VVWRA into the Mojave River within the Transition Zone. Exhibit D shows the measured annual discharges by VVWRA for the period 1990 to 2024. VVWRA discharges started in the 1980s. As agricultural land use changed and new developed areas were connected to the sewered system, the patterns of return flows changed. In 1990, discharges by VVWRA were nearly 7,000 acre-feet. By 2020, the annual discharges by VVWRA were 13,719 acre-feet. The long-term increase suggests population growth related to the new developed areas shown in land use changes (Exhibit C, p. 188).

The NLCD dataset for the Centro Subarea (**Exhibit C**, p. 189) indicates a reduction in cultivated land, particularly in the Lockhart area and areas near Hodge. Similarly, the NLCD dataset for Este and Oeste subareas (**Exhibit C**, pp. 190-191) shows a considerable reduction in agricultural land use, and an increase in the developed areas in the Oeste Subarea. It is noteworthy that Oeste agricultural land use is expected to be almost zero now (2025).

Lastly, the NLCD dataset for the Baja Subarea (**Exhibit C**, p. 192-193) also shows a reduction in agricultural land use in the 30-year period evaluated. For the Baja Subarea, Watermaster also included a comparison of the most recent five years (2020 to 2024). This additional comparison documents the most recent changes in agricultural land uses, indicating that cultural conditions in the Baja Subarea have continued to change.

Watermaster findings on changes in land uses are consistent with the changes in groundwater pumping and number of acres irrigated ("irrigated acreage"), as indicated below.

B. Changes in Pumping and Irrigated Acreages

Exhibit E shows the distribution of the total water uses in the Water Years 1990, 2020, 2022, and 2024. In 1990, Water Use was predominantly agricultural accounting for 60%, and other uses (Commercial, Municipal, Industrial, Golf Course and Recreational) accounting for 40%. Thirty years later, with the implementation of the Judgment, the water use distribution has changed. In 2020, agricultural uses in the Basin Area was about 21%, while the other users were about 79%. Continuation of the rampdown has led to a continued decline in agricultural pumping. By 2024, agricultural uses declined further to only 14% and the remaining 86% corresponds to other uses.

Exhibit F shows the estimated total production for the Mojave Basin Area by the Type of Use from Water Year 1995 to Water Year 2024. The graphic indicates water use trends over nearly a 30-year period by five categories: Agricultural, Municipal, Industrial, Golf Course, and Recreational. During the peak Water Year 1996, total water production was close to 195,000 acre-feet. There was a remarkable

downward trend in water use over time. By Water Year 2023-2024, total water use was about 111,000 acre-feet, a reduction of about 43% from the Water Year 1996 when the Judgment was implemented. In 1995, agricultural use (red bars) accounted for the largest share (nearly 88,000 acre-feet). Agricultural use dropped significantly after 1998 and continued to decline steadily. It is presently below 20,000 acre-feet indicating a major shift away from irrigated farming. Municipal use (blue bars) remains the largest component after agriculture declined. It fluctuates but generally stays between 70,000 and 100,000 acre-feet showing relative stability compared to other uses. Other use categories (Industrial, Golf Courses, Recreational) represent a small portion of the total use. In general, golf courses and recreational uses remain relatively constant, while industrial use has a slight variability.

Exhibit G provides a graphic of the Agricultural Water Production (blue bars) and Irrigated Acreages (red line) for all subareas combined from 1995 to 2024.

Exhibit H provides graphics of the Agricultural Water Production (blue bars) and Irrigated Acreages (red line) for each individual subarea from 1995 to 2024.

- Alto Subarea. For the Alto Subarea, both water production and irrigated acreage have declined consistently over time. In 1995, agricultural water production in Alto was about 14,600 acre-feet. By 2024, agricultural water production dropped to roughly 1,200 acre-feet. Watermaster's data on irrigated acreage shows a similar trend. In 2000, irrigated crops were grown on 1,452 acres. By 2024, irrigated crops were reduced to 221 acres. Irrigated acreages show a steady downward trend, with notable drops after 2002 (966 acres) and 2008 (711 acres).
- Centro Subarea. Agricultural water production and irrigated areas in Centro Subarea have declined over the 30-year period. In 1995, agricultural water production in Centro was about 27,400 acre-feet. By 2024, agricultural water production dropped to roughly 6,200 acre-feet. Watermaster's data on irrigated acreage shows a similar trend. In 2000, irrigated crops were

grown on 2,029 acres. By 2024, irrigated crops were reduced to 1,093 acres. Irrigated acreages show some variability over time; however, a steady downward trend can be observed after 2008.

- Baja Subarea. In 1995, agricultural water production in Baja was about 35,200 acre-feet. By 2024, agricultural water production dropped to roughly 5,500 acre-feet. Watermaster's data on irrigated acreage shows some variability; however, irrigated areas show a steady downward trend during recent years. In 2000, irrigated crops were grown on 5,296 acres. By 2024, irrigated acreages were reduced to 1,779 acres. Watermaster concludes that agricultural pumping patterns and irrigated areas have changed during the last five years. This is consistent with the evidence of land use changes observed in Baja during the 2020 to 2024 period (Exhibit C).
- Este Subarea. Both agricultural water production and irrigated acreage have declined significantly over time. In 1995, agricultural water production was about 6,900 acre-feet. By 2024, agricultural water production dropped to roughly 2,200 acre-feet. Watermaster's data on irrigated acreage shows a similar trend. In 2000, irrigated acreage was 956 acres. By 2024, irrigated acreage had been reduced to 496 acres. After 1996, with the implementation of the Judgment, agricultural water production and simultaneously irrigated land in the Este Subarea have been in continuous decline.
- Oeste Subarea. The graphic for Oeste Subarea shows a clear long-term decline in both agricultural water production and irrigated acreage from 1995 to 2024, with some notable fluctuations. In 1995, agricultural water production was about 3,600 acre-feet. By 2024, agricultural water production reached zero acre-feet. Watermaster's data on irrigated acreage shows fluctuations, with a rise in farmed acreages between 2004 and 2012, peaking at 612 acres in 2012, even as agricultural water production remained relatively stable. After 2013, irrigated acreage declined rapidly, falling below 200 acres by 2020 and reaching zero by 2022. By 2022, agricultural water production had dropped to about 100 acre-feet and by 2024, water production

reached zero acre-feet indicating a complete cessation of agricultural pumping and irrigation. The complete drop to zero in both agricultural water production and irrigated acreages suggests a transition out of agricultural use in the Oeste Subarea, likely due to the implementation of the Judgment. This is consistent with the evidence of land use changes observed in Oeste during the 1990 to 2020 period (**Exhibit C**, p.191).

The foregoing demonstrates conclusively that the previously utilized hydrologic base period from 1931 to 1990 does not represent "recent cultural conditions" and, therefore, does not meet the Bulletin 84 criteria for selection of a hydrologic base period to be used for calculating PSY. Accordingly, it is necessary to select a hydrologic base period that fairly represents, among other required elements, recent cultural conditions.

Water Supply to the Basin Area

Water supply to the Basin Area includes gaged and ungagged inflow, subsurface flow, deep percolation of precipitation, and certain imports.

Surface water inflow to the Alto Subarea is measured flow of the Mojave River at the Forks and is the sum of reported values from USGS gage stations at West Fork Mojave River near Hesperia, CA and Deep Creek near Hesperia, CA. This measured USGS gage data provides the best available information regarding the surface water inflow to the Basin Area. There are very few records of surface water inflow to the Este and Oeste Subareas.

Watermaster reviewed records of precipitation. Although there are several precipitation stations located within the Forks' watershed, the reliability of this data is questionable. The precipitation records are short, inconsistent, and intermittent (see **Exhibit M**). For these reasons, Watermaster believes the measured flow of the Mojave River at the Forks continues to be the record indicative of the long-term

water supply to the Basin Area. Additionally, the flow record at the Forks provides a clear indication of wet and dry periods in the Basin Area.

New Proposed Hydrologic Base Period 2001-2020

The 2001-2020 hydrologic base period, which was proposed by Watermaster in 2024 and 2025 meets the guidance set forth in Bulletin 84 as evaluated at the Forks. It is reasonably representative of long-term hydrologic conditions for inflow at the Forks, contains normal, extreme wet and dry years, and begins and ends with dry years. It also is within the period of record and includes recent cultural conditions. The 2001-2020 hydrologic base period, while similar, is drier by about 6%, compared to the 1931-1990 period as measured at the Forks. **Exhibit I** is a hydrograph of the Mojave River at the Forks, showing the initial 60-year hydrologic base period of 1931-1990, and the proposed new hydrologic base period of 2001-2020.

Once the hydrologic base period is set, there is no reason to reset it every year, or at any other time unless the conditions upon which it is based change significantly.

Hydrologic Base Period vs. Pumping and Consumptive Uses for purposes of PSY determination

The purpose of this section is to provide an explanation of the differentiation between the selection of the hydrologic base period, and the selection of a year representative of pumping and consumptive uses for determination of PSY. For water supply, the hydrologic base period is used to determine the average water supply to the Basin Area, and it is assumed that this pattern will repeat itself in the future for planning purposes.

Watermaster needs to clarify that when calculating PSY, the year representative of pumping and consumptive uses does not necessarily need to be strictly contained within the time frame of the hydrologic base period. In 1996, when the Judgment was entered, the initial hydrologic base period

was 1931-1990, and the PSY determination used the pumping and consumptive uses from the year 1990 (Table C-1 from the Judgment).

However, in 2000, Albert A. Webb Associates on behalf of Watermaster re-evaluated PSY using the base period for streamflow data of 1931-1990, and the pumping and consumptive uses from the Water Year 1997 (Webb, 2000). More recently, in 2019, Watermaster re-determined PSY using the water supply from the initial hydrologic base period of 1931-1990, and the pumping and consumptive uses from the Water Year 2018. Mr. Ernest Webber, one of the Bulletin 84 authors, contributed to the Webb 2000 study.

For purposes of planning, Watermaster operates under the assumption that the patterns of water supply will repeat itself in the future, since we do not know the future water supply. For PSY determination, we expect that pumping in the near future approximates the current pumping patterns. This allows Watermaster to calculate the amount of imported water that needs to be purchased by the Parties so that the Basin remains balanced.

In 2024, Watermaster prepared a report with an update to PSY titled "Production Safe Yield and Consumptive Use Update". In the 2024 PSY Update, Watermaster stated that "The Court previously asked that we consider a drier and more recent hydrologic planning period." Consequently, Watermaster updated the hydrologic base period and recommended 2001-2020 for purposes of re-determination of PSY. The 2024 PSY Update by Watermaster determined that for PSY calculations, the pumping and consumptive use data from the Water Year 2022 were representative because "Water year 2022, the most recent year that data is available is assumed to represent pumping and consumptive uses on a forward-looking basis."

As noted previously by Watermaster, patterns of production, applied water and consumptive uses are subject to change as land uses change, however they are not expected to change significantly from one year to the next (this has been largely true except in the Baja Subarea). Per the July 2025

Watermaster Motion, the pumping patterns and land use in the Baja Subarea have greatly changed in the recent five years. This was evidenced by the changes in agricultural pumping (**Exhibit H**) and changes in land use (**Exhibit C**).

Even though the hydrologic base period of 2001-2020 was recommended by Watermaster for all Subareas, Watermaster recognizes that for the Baja Subarea, special circumstances may warrant PSY determination based on limited data. For the Baja Subarea, the only reliable data available is pumping and water level measurements (which show recent recovery). This is true for the Este Subarea and the Oeste Subarea as well.

In 2024, Watermaster recommended Baja PSY of 12,749 acre-feet, which was determined by interpretation of water levels compared to the total pumping. Total pumping in the Baja Subarea during the representative Water Year 2022 was 12,749 acre-feet. Again, for planning purposes, this is assumed to be representative of the recent cultural conditions in the Baja Subarea.

Watermaster justification for the new hydrologic base period 2001-2020

The 60-year hydrologic base period of 1931-1990 was based on the guidance from DWR Bulletin 84 (1967), as was the 2001-2020 proposed 20-year hydrologic base period.

In September of 2022, the Court asked Watermaster to consider a drier and more recent hydrologic base period. The average water supply measured at The Forks for the hydrologic base period (1931-1990) was 65,538 acre-feet per year, while the average water supply for the proposed hydrologic base period (2001-2020) was 61,635 acre-feet per year, which is 6-percent drier than the 1931-1990 hydrologic base period.

In addition to the water supply measured at The Forks, Watermaster also evaluated precipitation in the Basin Area to determine if the new hydrologic base period is consistent with the selection criteria from the Los Angeles vs. San Fernando case in that the base period "was a representative period of

normal precipitation including wet and dry periods of magnitude and occurrence similar to long-time mean supply conditions..." (Exhibit B, p. 183) To evaluate precipitation patterns in the Mojave Basin Area, the Watermaster reviewed precipitation stations located within the watershed tributary to The Forks (see Exhibit J), as well as stations in or near the Oeste subarea (see Exhibit K) and within the Este subarea (see Exhibit L) that have long-term records. Exhibit M shows the location of the precipitation stations with available record data, the period of record for each station, and the watershed in which each station is located. Watermaster noted that only one precipitation station covers the period of record of 1931-1990, this station is "Lake Arrowhead Fire Station #1". The average precipitation during the initial hydrologic base period of 1931-1990 was 41.36 inches, as measured at the Lake Arrowhead Fire Station #1. Table 1 shows the results of this comparison, including the percentage of change from the 1931-1990 base period average.

Table 1. Average precipitation during the alternative hydrologic base periods and their comparison with the average precipitation during the initial 1931-1990 base period.

Alternative Hydrologic Base	Precipitation Average (inches)	Change Relative to 1931-1990 Average (41.36 inches)	Criteria
1991-2022	39.3	-4.9%	Start and end years are dry and are preceded by a series of dry years.
1995-2024	42.0	1.5%	Start and end years are wet and are preceded by a wet year/series of wet years.*
1998-2024	41.3	-0.1%	Start and end years are wet and are preceded by a wet year/series of wet years.
2001-2020	37.2	-10.1%	Start and end years are dry and are preceded by a series of dry years.
2002-2022	39.0	-5.8%	Start and end years are severe dry and are preceded by a series of severe dry years.

<u>Note:</u> As mentioned by Watermaster, precipitation stations within the Fork's watershed provide precipitation records that are short, inconsistent, and intermittent.

^{*}The water supply at the Forks during the Water Years 1992 through 1995 was about three times the long-term average supply.

Evaluation of Alternative Hydrologic Base Periods

Watermaster evaluated a series of potential/alternative hydrologic base periods in addition to the 2001 to 2020 base period. These potential base periods meet the definition of a base period set forth in Bulletin 84. Table 2 is a summary of the alternative hydrologic base periods that were evaluated by Watermaster. Table 2 shows the average Mojave River flow at the Forks and the percentage of change relative to the initial hydrologic base period 1931-1990. Watermaster noted that the average water supply to the basin during each alternative base period was similar in magnitude to the average conditions during the initial base period of 1931-1990.

Table 2. Average water supply during the alternative hydrologic base periods and their comparison with the initial 1931-1990 base period.

Alternative Hydrologic Base Periods	Mojave River at the Forks Average (a.f.)	Change relative to the 1931-1990 average (65,538 a.f.)	Criteria
1991-2022	71,344	8%	Start and end years are dry and are preceded by a series of dry years.
1995-2024	67,057	2%	Start and end years are wet and are preceded by a wet year/series of wet years.*
1998-2024	65,090	-1%	Start and end years are wet and are preceded by a wet year/series of wet years.
2001-2020	61,635	-6%	Start and end years are dry and are preceded by a series of dry years.
2002-2022	59,009	-11%	Start and end years are severe dry and are preceded by a series of severe dry years.

Notes: The PSY Update prepared by Watermaster in February of 2024 updated the hydrologic base period to be 2001-2020 for purposes of establishing PSY. This selection was based on the information that was available and reliable for Watermaster at the time of the analysis (i.e., flow data up to the year 2023).

Also, the PSY Update by Watermaster evaluated the 2001-2020 hydrologic base period also because the Upper Mojave Basin Model was calibrated through the Water Year 2020.

*The water supply at the Forks during the Water Years 1992 through 1995 was about three times the long-term average supply.

The selection of the new hydrologic base period was based on the following criteria: land use changes and recent cultural conditions, availability of the records and satisfying the request from the Court to evaluate a dryer and more recent time period.

The hydrologic base period of 1991-2022 shows an average water supply about 8-percent higher than the average of the initial base period 1931-1990. The hydrologic base period of 1995-2024 shows an average water supply about 2-percent higher than the average of the initial base period 1931-1990. From a water supply perspective, a larger magnitude of average water supply might yield a higher PSY value. On the contrary, a smaller magnitude of water supply might yield a lower PSY value. However, as noted above, the Court previously asked Watermaster to consider a drier and more recent hydrologic base period. For these reasons, Watermaster does not recommend the two alternative hydrologic base periods of 1991-2022 and 1995-2024.

The alternative base period 2002-2022 starts and ends on a dry year and is preceded by a series of dry years. However, because the UMBM is calibrated through the year 2020 only, Watermaster does not consider this to be an appropriate selection. Additionally, this alternative is about 11% drier than the 1931-1990 base period. Because the alternative 2002-2022 base period is outside the period of the UMBM calibration, and the magnitude of water supply in the alternative 2002-2022 base period does not "closely approximate" the magnitude of the long-term water supply during the 1931-1990 base period (as indicated by DWR Bulletin 84), Watermaster believes the alternative 2002-2022 base period is not as appropriate as the recommended 2001-2020 base period.

The other alternative base periods evaluated by Watermaster were Water Years 1995-2024 and 1998-2024. As noted in Table 2, the PSY Update prepared by Watermaster in February of 2024 evaluated a new hydrologic base period based on the information available at that time (up to the end of Water Year 2023). For that reason, Watermaster did not include a base period ending in 2024. Importantly, **the**

27

Judgment does not require the hydrologic base period to be revised or updated each year as new information becomes available.

The average water supply during the base period of 1995-2024 was 67,057 acre-feet, which is about 2-percent higher than the long-term 1931-1990. The average water supply during the base period of 1998-2024 was 65,090 acre-feet, which is only 1-percent drier than the initial base period. Although these two potential base periods are similar in magnitude to the long-term average, they include years that are not representative of recent land uses. According to the evidence shown in Exhibit C, the land uses have greatly changed since the 1990s to present time, particularly due to Mojave Basin Area experiencing a major shift away from agricultural pumping and agricultural land use. The agricultural water use data suggest that pumping during the mid-1990s was in the order of 87,000 to 89,000 acrefeet per year (see Exhibit G). By 2022, agricultural water use was reduced to less than 20,000 acre-feet. As explained above, Watermaster's data on irrigated acreages show a similar trend of a constant reduction in irrigated land, particularly during recent years. Because the new hydrologic base period should meet the criteria of the DWR Bulletin 84 and include recent cultural conditions, Watermaster determined that the alternative hydrologic base periods that begin in the 1990s do not meet the representation of recent cultural conditions, and therefore, they should not be considered appropriate hydrologic base periods for PSY redetermination.

Based upon the foregoing, Watermaster concludes the average water supply during the proposed 20-year hydrologic base period from 2001 to 2020 is similar in magnitude to the average supply during the 1931-1990 hydrologic base period. However, as explained herein, the cultural conditions in the Basin have changed from those present from 1931-1990 and from those observed during the 1990s. Accordingly, a long-term hydrologic base period more representative of current cultural conditions is more appropriate and warranted – which is one reason Watermaster recommends using the 2001 to 2020 hydrologic base period for the PSY re-calculations.

Watermaster justification for recommending a new hydrologic base period

As noted, the 60-year hydrologic base period of 1931-1990 was based on guidance from DWR Bulletin 84 (1967), which explains:

The base period conditions should be reasonably representative of long-time hydrologic conditions and should include both normal and extreme wet and dry years. Both the beginning and the end of the base period should be preceded by a series of wet years or a series of dry years, so that the difference between the amount of water in transit within the zone of aeration at the beginning and end of the base period would be a minimum. The base period should also be within the period of available records and should include recent cultural conditions as an aid for projections under future basin operational studies.

For water supply, Watermaster has proposed a new and more recent hydrologic base period of 2001-2020, which is consistent with DWR Bulletin 84 because: it starts and ends in a series of dry years, contains both normal and extreme wet and dry years, has a minimum difference in the amount of water at the beginning and the end, and **includes recent cultural conditions** (i.e., pumping, patterns of water use, land uses). Today's cultural conditions are represented by the new recent hydrologic base period of 2001-2020; cultural conditions are expected to change only slightly year to year in the near future (except for the Baja Subarea). Watermaster's reason for proposing a new and more recent hydrologic base period is because the original 60-year hydrologic base period of 1931-1990 does not reflect the recent cultural conditions. The total pumping, the patterns of pumping, water uses, and land uses have greatly changed from 1931-1990 to the recent time. Moreover, the water supply observed in 2001- 2020 is expected to repeat itself in the future for planning purposes. As mentioned above, Watermaster's analysis demonstrates the water supply for the 1931-1990 and 2001-2020 differed by only 6-percent; however,

1	the cultural	conditions from 1931-1990 are no longer representative of present and future cultural
2	conditions.	
3		
4	I decl	are under penalty of perjury, under the laws of the State of California, that the foregoing
5	is true and co	rrect.
6		when 12 2025
7	Dated: Nover	mber 12, 2025
8		
9		
10		INDEX OF EXHIBITS
11	Exhibit A	California Department of Water Resources Bulletin No. 84, August 1967 (pp. 21-178)
12	Exhibit B	Excerpts from volume 1 of the July, 1962 State Water Rights Board "Report of
13		Referee," filed in City of Los Angeles v. City of San Fernando (pp. 179-184)
14	Exhibit C	Watermaster Land Use Changes in the Basin Area (pp. 185-193)
15	Exhibit D	Annual Discharge of Victor Valley Wastewater Reclamation Authority to Mojave River
16		(pp. 194-195)
17	Exhibit E	Estimated Water Production by Agricultural and Other Uses (pp. 196-197)
18	Exhibit F	Estimated Water Production by Type of Use (pp. 198-199)
19	Exhibit G	Agricultural Water Production and Irrigated Acreage for All Subareas (pp. 200-201)
20	Exhibit H	Agricultural Water Production and Irrigated Acreage for each subarea (pp. 202-207)
21	Exhibit I	Mojave River Flow at the Forks (pp. 208-209)
22	Exhibit J	Precipitation Stations within the Forks Watershed (pp. 210-212)
23	Exhibit K	Precipitation Stations within the Oeste Subarea (pp. 213-215)
24	Exhibit L	Precipitation Stations within the Este Subarea (pp. 216-218)
25	Exhibit M	Precipitation Stations within the Forks Watershed and within Este and Oeste Subareas
26		(pp. 219-221)
27		

EXHIBIT A

STATE OF CALIFORNIA The Resources Agency

Department of Water Resources

BULLETIN No. 84

MOJAVE RIVER GROUND WATER BASINS INVESTIGATION

AUGUST 1967

RONALD REAGAN
Governor
State of California

WILLIAM R. GIANELLI

Director

Department of Water Resources

FOREWORD

This investigation and report are the result of the recognition by the Mojave Water Agency of its need for reliable information on existing water resources, future water requirements, and sources of additional water supply to meet the needs for growth of the region it serves. Accordingly, the agency, through its legislative representatives, obtained state funds for the Department of Water Resources to undertake this investigation. Appropriation of funds was made under Budget Item 263.2, A. B. No. 1, 1962 Second Extraordinary Session.

To provide interested agencies and persons with information as soon as it was available, informal meetings were held and two progress reports were published by the Department of Water Resources.

The results of this study show that additional water will be required if the Mojave region is to realize its growth potential. The meager rainfall and increasing water demands of the area indicate the need for a plan of basin operation that will take full advantage of existing and potential water resources, including ground water, imported water, and the use of the ground water basins for both storage and distribution of water.

The information provided by this study points out the need and provides a foundation for a ground water basin model simulation and operational and economic studies, leading to the selection by local agencies of an optimum plan of water resources management.

William R. Gianelli, Director Department of Water Resources The Resources Agency

State of California

June 12, 1967

TABLE OF CONTENTS

	Page
FOREWORD	iii
ORGANIZATION	xii
ENGINEERING CERTIFICATION	xiii
ABSTRACT	xiv
CHAPTER I. INTRODUCTION	1
Objectives of Investigation	1
Scope of Investigation	2
Conduct of Investigation	3
Related Investigations and Reports	5
Area of Investigation	6
Subdivisions of the Study Area	9
Base Hydrologic Period	12
CHAPTER II. GEOLOGY	17
Physiography	17
Stratigraphy	18
Water-Bearing Formations River Deposits Playa Deposits Dune Sand Younger Alluvium Younger Fan Deposits Old Lake and Lakeshore Deposits Older Alluvium Older Fan Deposits Shoemaker Gravel Harold Formation	19 20 20 22 22 23 23 24 24 24
Nonwater-Bearing Formations	25 25 26

	Pag
Tertiary Volcanic Rocks	. 26 . 27
Structures Affecting Ground Water Movement	. 27
Helendale Fault	28
Lockhart Fault	29
Calico-Newberry Fault	30
CHAPTER III. WATER SUPPLY, USE, AND DISPOSAL	33
Water Supply	33
Precipitation	34
Surface Flow	39
Subsurface Flow	53
Import - Export of Water	55
Water Use and Disposal	58
Surface Outflow	58
Subsurface Outflow	59
Export Water	59
Consumptive Use	59
Agriculture	60 64
Nonbeneficial Consumptive Use	67
Water Supply Surplus or Deficiency	7 3
CHAPTER IV. WATER QUALITY	77
Sampling and Analyses	78
Mineral Character and Quality of Surface and Ground Water	80

	Page
Surface Water	80
Ground Water	83 84 85 86 87 88
CHAPTER V. GROUND WATER STORAGE, OVERDRAFT, AND SAFE YIELD	91
Ground Water Storage	91
Storage Capacity	92
Change in Storage	95
Ground Water Overdraft and Safe Yield	100
CHAPTER VI. FUTURE SUPPLEMENTAL WATER REQUIREMENTS AND SOURCES	105
CHAPTER VII. SUMMARY OF FINDINGS AND CONCLUDING STATEMENTS	111
Summary of Findings	111
Geology	111
Hydrology	112
Historical Conditions	112
Future Conditions	116
Water Quality	118
Concluding Statements	119
APPENDIXES	
Appendix A: BIBLIOGRAPHY	121
Appendix B: DEFINITION OF TERMS	127
Appendix C: CLASSIFICATION OF LAND USE	135

		Page
Appendix 1	D: WATER QUALITY CRITERIA	139
	Criteria for Drinking Water	141
	Criteria for Hardness	Jդեյ
	Criteria for Irrigation Water	7111
	Criteria for Industrial Uses	146
Appendix :	E: SPECIFIC YIELD VALUES AND REPRESENTATIVE DRILLERS' TERMS	147
	FIGURES	
Figure No	•	
1	Location Map	6
2	Area of Investigation	7
3	Precipitation Characteristics at Squirrel Inn No. 2	1/4
4	Generalized Stratigraphic Column of Water-Bearing Sequence, Mojave River Area	21
5	Average Monthly Distribution of Precipitation at Representative Stations 1936-37 Through 1950-61	35
6	The Ground Water Basin as a Free Body	74
		93
7	Ground Water Storage Unit	
8	Cumulative Water Supply Surplus or Deficiency	97
9	Hydrographs of Ground Water at Representative Wells	98
	TABLES	
Table No.		
1	Names and Areal Code Numbers of Hydrologic Areas	10
2	Boundary Conditions Between Basins	1.1

Tab	<u>le No</u> .		Page
	3	Water Level Data for Wells Adjacent to Helendale Fault in Lucerne Basin	29
	4	Water Level Data for Wells Adjacent to Lockhart Fault	30
	5	Water Level Data for Wells Adjacent to Calico-Newberry Fault	31
	6	Selected Precipitation Stations in the Study Area	37
	7	Estimated Average Annual Precipitation by Area	38
	8	Estimated Seasonal Deep Percolation of Precipitation on the Valley Floor South of Hesperia During the Base Period	40
	9	Stream Gaging Stations	42
	10	Average Annual Flows at the Basin Boundaries	49
	11	Average Precipitation - Percent Runoff Values	50
	12	Estimated Surface Inflow During the Base Feriod	52
	13	Estimated Average Annual Subsurface Inflow	54
	14	Estimated Average Annual Amounts of Water Imported to the Upper and Lower Mojave Basins	5 6
	15	Estimated Water Supply During the Base Period	57
	16	Estimated Average Seasonal Unit Consumptive Use Values for Agricultural Crops During the Base Period	62
	17	Estimated Land Use in the Basins in 1961	63
	18	Consumptive Use of Water by Agriculture During the Base Period	64
	19	Estimated Population, 1930 to 1960	65
	20	Consumptive Use of Water by Urban and Suburban Areas During the Base Period	66

Table No.		Page
21	Consumptive Use of Water by Industry During the Base Period	68
22	Average Annual Unit Consumptive Use Value of Riparian Native Vegetation	69
23	Areas Devoted to Riparian Native Vegetation in 1960-61	70
24	Consumptive Use of Water by Riparian Native Vegetation During the Base Period	71
25	Estimated Water Use and Disposal During the Base Period	72
26	Estimated Water Supply, Use and Disposal, and Water Supply Surplus or Deficiency During the Base Period	75
27	Mineral Analyses of Representative Surface Waters	79
28	Mineral Analyses of Representative Ground Waters from Wells	81
29	Estimated Ground Water Storage Capacity, Available Storage, and Ground Water in Storage	95
30	Estimated Change in Amounts of Ground Water in Storage During the Base Period	96
31	Pumpage of Ground Water in 1961	99
32	Estimated Annual Overdraft under 1960-61 Land Use Conditions and Pumpage	101
33	Estimated Mean Annual Safe Yield Under 1960-61 Land Use Conditions and Pumpage	102
34	Water Requirements and Sources ← Supply	108
35	United States Public Health Service Drinking Water Standards, 1962	142
36	Upper Limits of Total Solids and Selected Minerals	143

Table	No.	Page
37	Relationship of Temperature to Fluoride Concentration in Drinking Water	144
38	Hardness Classification	144
39	Qualitative Classification of Irrigation Waters	145
	PLATES	
Plate	No.	
1	Physiographic Features and Lines of Equal Average Seasonal Precipitation	
2	Areal Geology	
3	Geologic Sections	
4	Ground Water Basins and Effective Base of Fresh Water	
5	Land Use - 1961	
6	Water Quality Conditions	
7	Ground Water Level Contours, 1961	
8	Ground Water Level Contours, Spring 1964	.2
9	Change in Ground Water Level Elevation From 1936-37 Through 1960-61	

State of California The Resources Agency DEPARTMENT OF WATER RESOURCES

RONALD REAGAN, Governor

WILLIAM R. GIANELLI, Director, Department of Water Resources

JOHN R. TEERINK, Deputy Director

SOUTHERN DISTRICT

James J. Doody District Engineer Herbert W. Greydanus Principal Engineer Jack J. Coe Chief, Planning Branch
This investigation was conducted under the direction of
Robert Y. D. Chun Chief, Project Planning and Special Investigations Section
The Program Manager responsible for overall supervision of the investigation and preparation of the report was
Ernest M. Weber Chief, Geology Unit
The geologic and hydrologic studies were conducted by
Harvey L. Chun Assistant Civil Engineer Thomas M. Schwarberg Assistant Engineering Geologist
Others who were connected with this investigation in its early stages were
Vernon E. Valantine
John R. Cummings Associate Engineering Geologist Clifford R. Farrell Associate Engineering Geologist Joseph F. LoBue Associate Engineering Geologist

State of California The Resources Agency DEPARTMENT OF WATER RESOURCES

ENGINEERING CERTIFICATION

This report has been prepared under my direction as the professional engineer in direct responsible charge of the work, in accordance with the provisions of the Civil and Professional Engineers' Act of the State of California.

Registered Civil Engineer

Registration No. 16783

Date / 10, 1967

ATTEST:

District Engineer Southern District

Registration No. 6500

Date _____ U'Y 11 1007

ABSTRACT

This bulletin presents data on the water resources and water requirements of a part of the Mojave Desert area, consisting of about 3,700 square miles located primarily in San Bernardino County. The study was authorized by the Legislature in 1962 for the purpose of providing fundamental geologic and hydrologic information to the State of California and to local water agencies in the Mojave area as the basis for planning for optimum use of water supplies and facilities. In this desert region, annual water supply from precipitation is not sufficient to meet the needs of existing agricultural and urban developments. The water deficiency that has existed in the area since about 1945 has been met by extraction of ground water. However, with the anticipated continuation—or acceleration—of the urban growth pattern of recent years, additional water will be required. These future water needs could be met by a combination of ground water and imported water. Control of non-beneficial riparian vegetation offers a potential secondary source of increased water supply. The bulletin describes geology, water supply, water quality, and water requirements in the study area. Tables give detailed information on resources and requirements. Figures and plates show the area of investigation, geology and geologic sections, precipitation patterns, hydrographic units, land use, and changes in ground water levels.

CHAPTER I. INTRODUCTION

Recently, residences and industry have grown up over much of the land along the Mojave River in San Bernardino County that formerly supported only agriculture. This development, which has increased the water uses, has caused concern among water agencies over the adequacy of the local supply. Although large amounts of water are known to be stored underground, the scanty rainfall in the vast desert areas surrounding the river raises a question as to the long-term reliability of local supplies and suggests the need for imported water. In addition, the quality of the local supplies is a matter of concern, particularly the possible changes in quality resulting from increased urban development and water use. As one means of relieving the problem, the Mojave Water Agency on June 22, 1963, signed a contract to take delivery of 50,000 acrefect from the State Water Facility.

In recognition of the need for an analysis of the water resources along the Mojave River, the California Legislature requested the Department of Water Resources to make such an investigation. Studies were started in July 1962.

To provide interested agencies and persons with information as soon as it was available, informal meetings were held and two progress reports were published. This final report summarizes the results of the investigation.

Objectives of Investigation

The major objective of this study is to provide geologic and hydrologic information that can be used by local agencies in managing the

surface and ground water resources of the area in the most productive and economic manner.

The specific objectives of this investigation are to:

- 1. Develop information on boundary conditions of the ground water resources, structures affecting ground water movement, transmissive and storage characteristics of the water-bearing material, and subsurface flow and change in ground water storage.
- 2. Increase the detail and extent of the knowledge pertaining to the amounts of annual water supply, use, and disposal for each subdivision of the study area for a selected base period. From this information, evaluate the character and amount of deep percolation, determine the average annual water supply surplus or deficiency, estimate the average annual safe yield and overdraft and determine where future imported water supplies must be delivered, by identifying the areas of water supply surplus and deficiency.

Scope of Investigation

The investigation consisted of a comprehensive and detailed geologic and hydrologic study of the area along the Mojave River. The hydrologic study concentrated on the 25-year period of 1936-37 through 1960-61, which was selected as the study base period. The hydrologic study included investigation of the mineral quality of both the surface and ground water supplies.

The geologic investigation consisted of the review of all available geologic data, detailed field mapping, and field transmissibility tests. Basin boundaries and physical properties of the area were then determined.

In the hydrologic investigation, the available reports on the study area were reviewed and data were compiled from reports published by the United States Geological Survey, United States Weather Bureau, and Department of Water Resources. Numerous contacts were made with individual agencies to gather the necessary data regarding the various items of water supply, use and disposal. This information was developed on an annual basis.

The water quality investigation consisted of review and evaluation of existing data and of new data obtained from a limited water sampling program. Areas in which the water quality is relatively consistent were delineated to show the mineral character and total dissolved solids content of the water. A limited salt balance analysis was made.

Conduct of Investigation

Geologic, hydrologic, and water quality studies were conducted to meet the objectives of this investigation. Standard engineering concepts were used to develop hydrologic information and, where necessary, simplifying assumptions were made to facilitate the geologic, hydrologic, and water quality analyses. The major steps in the conduct of this investigation are summarized below:

- 1. The geologic properties of the study area were determined, the study area was subdivided into convenient workable units, transmissibility and storage factors of the water-bearing sediments were estimated, and historical water level elevations were determined.
- 2. The annual amounts of water supply, use, and disposal were estimated; water use and disposal were subtracted from the water supply to obtain annual water supply surplus or deficiency for the base period.

- 3. The change in the amount of ground water in storage during the base period was estimated by the specific yield method.
 - 4. The mineral quality of the water in the area was determined.
- 5. The total annual amount of water supply or deficiency was compared with the total annual change in the amount of ground water in storage during the base period.

During the first year of the investigation, activities were directed toward establishing, on a preliminary basis, the extent of the local water resources of the area; this information was used by the Mojave Water Agency and the State of California as the basis for a contract to import a supplemental water supply through the California Aqueduct. These activities were summarized in the first progress report.

During the second year of the investigation, the geologic studies of the area were expanded to identify and delineate the extent of the water-bearing materials, to establish the location of structures affecting ground water movement, and to determine the hydraulic characteristics of the water-bearing materials. The refinement of the preliminary estimates of water supply, use, and disposal was commenced; the seasonal amounts of the major components of both surface and subsurface flows within the area were determined; also, a study of the mineral characteristics of both the ground water and surface water was initiated. These activities were summarized in the second progress report.

During the third year of the investigation, the studies to achieve the specific objectives of the program were completed. These studies included a determination of the annual amount of supply, use, and disposal of water during the base period; the annual amount of water supply surplus

or deficiency; and estimates of the present and future uses of water in the study area. The local water supplies and future water requirements were compared to ascertain the time, magnitude, and location of delivery of imported supplies. Ground water storage capacities estimates from the preliminary studies were revised, using an electronic digital computer. Change in the amount of ground water in storage during the base period was calculated and compared with water supply surplus or deficiency for the same period. This bulletin summarizes the activities and results of the entire investigation.

Related Investigations and Reports

Previous hydrologic investigations of the Mojave River region have been made and reported on by the Department of Water Resources and its predecessor agencies and by other federal, state, county, and private agencies. Reports of previous major investigations are listed below.

Other reports utilized in preparing this bulletin are summarized in Appendix A, Bibliography.

- 1. Blaney, Harry F., and Ewing, Paul A. "Utilization of the Waters of Mojave River, California." United States Department of Agriculture, Division of Irrigation. August 1935.
- California State Department of Public Works, Division of Water Resources. "Mojave River Investigation." Bulletin No. 47. 1934.
- 3. Frye, Arthur H., Jr. "Report on Survey for Flood Control, Mojave River, San Bernardino County, California." United States Corps of Engineers. December 28, 1956.
- 4. Koebig and Koebig, Incorporated. "Mojave Water Agency-Supplemental Water Report." Volume 1. March 1962.
- 5. ---. "Mojave Water Agency-Supplemental Water Report." Volume 1, Appendixes A, B, C, and D. March 1962.

- 6. Thompson, David G. "The Mojave Desert Region, California." United States Geological Survey Water-Supply Paper No. 578. 1929
- 7. United States Department of the Interior, Bureau of Reclamation. "Report on Victor Project, California." April 1952.

Area of Investigation

The area of investigation, which is outlined in Figures 1 and

2, is located almost entirely in San Bernardino County, with only

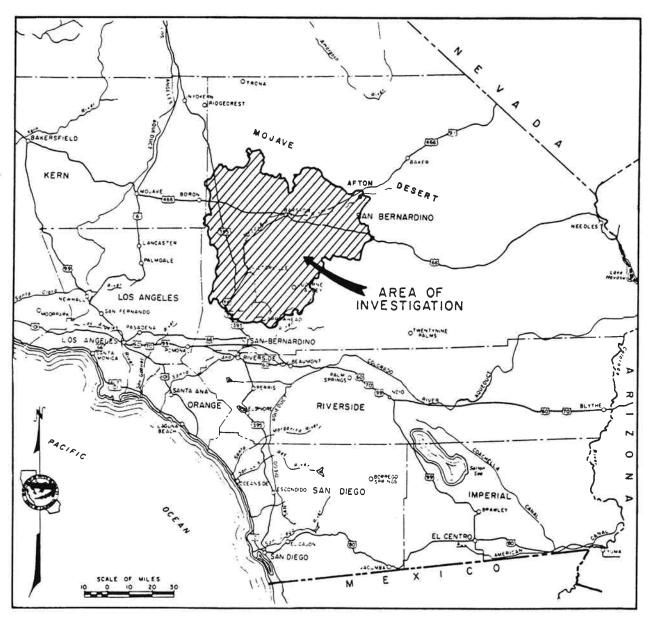
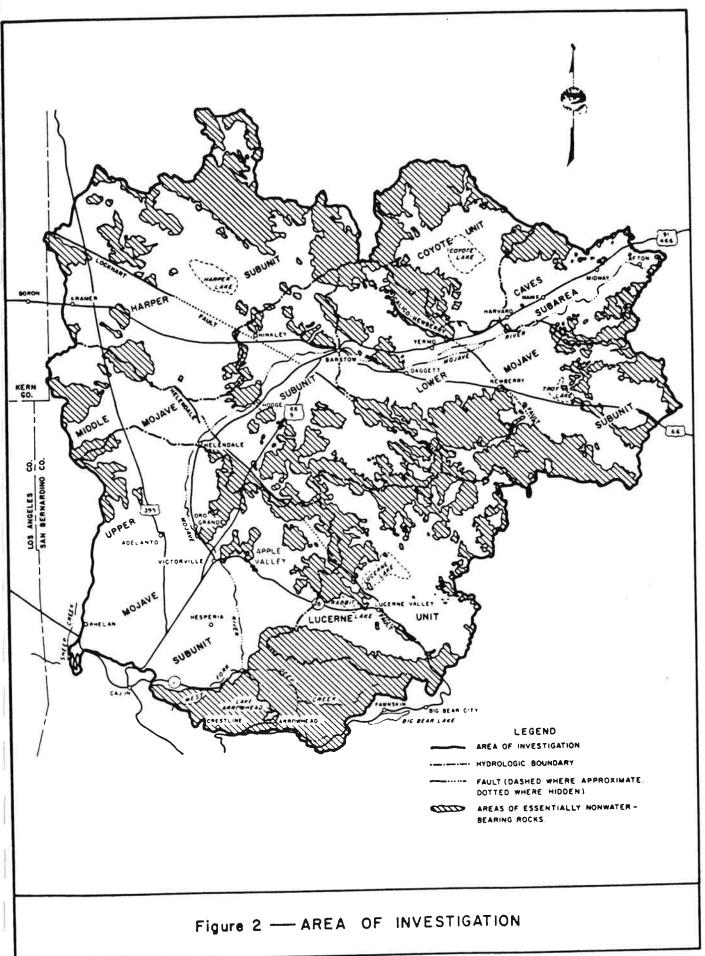



Figure I. LOCATION MAP

a small portion in Kern County. The study area is part of the Mojave Desert, which covers vast areas of east-central Southern California.

The study area is irregularly shaped and covers about 3,700 square miles in the south-central part of the Mojave Desert. The area extends about 60 miles northerly and easterly along and adjacent to the Mojave River from its source in the San Bernardino Mountains, along the southern border of the study area, to the desert floor near Afton.

Although the Mojave River extends beyond Afton, the area downstream from Afton was not included in the study because the use of water there is considered minor in quantity and economic importance to the total study area.

The study area is essentially a plain sloping gently northward and eastward. The plain is made up of small, broad valleys, or closed basins, separated by isolated hills, groups of hills, and low mountains. The bottoms of the closed basins are playas which contain water only following heavy rainfall. The largest playas in the study area are Lucerne Lake, Harper Lake, Coyote Lake, and Troy Lake.

Elevations in the study area range from more than 8,500 feet near Crestline in the San Bernardino Mountains to 2,715 feet at Victorville and 1,408 feet at Afton.

The Mojave River is the major stream traversing the study area. The river originates in the foothills of the San Bernardino Mountains at the junction of the West Fork and Deep Creek and flows north 12 miles to Victorville, then continues 18 miles adjacent to Highway 91 to Helendale. It then turns northeast and continues adjacent to Highway 91 past Barstow to Afton, the study area limit, approximately 90 miles from its beginning.

The river then flows to its terminus in Silver Lake. Flood waters in the Mojave River occasionally reach Silver Lake but soon evaporate. Perennial flow occurs only in the mountains and near Victorville, Harvard, and Afton.

Annual precipitation averages less than 4 inches in the desert area but exceeds 40 inches in the upper regions of the Mojave River watershed. Sixty percent of the precipitation occurs from December through March. The growing period between killing frosts averages about 245 days. The area is also noted for its high summer temperatures and low humidity; temperatures of more than 100° F and relative humidity below 20 percent are not uncommon.

The greater portion of the region is undeveloped. Historically, the development of irrigable lands and centers of population have been primarily along the Mojave River and the adjacent valleys where there has been an easily available supply of surface and/or ground water. Alfalfa and permanent pasture are the chief crops. The larger centers of urban development are the Cities of Barstow and Victorville, with 1960 populations of about 11,500 and 8,000. Other communities include Hesperia, Apple Valley, Lucerne Valley, Adelanto, and Yermo. Mining and the manufacture of cement are the chief industries. Several military installations are located in the study area, with George Air Force Base near Victorville being the largest.

Subdivisions of the Study Area

Because of the size and complexity of the study area and the need for localized information, the area was subdivided for this investigation. The subdivision was based mainly on information in the office report

published by the Department, "Names and Areal Code Numbers of Hydrologic Areas in the Southern District", April 1964. The information in the publication is the basis for compiling, filing, and retrieving geologic and hydrologic data with high-speed electronic data processing machines in the Department.

It was found convenient for this study to adopt the names and areal code numbers used in that publication. However, some significant boundary changes were made, which are used in this study. The 1964 report will be updated to reflect these changes. The revised boundaries are a result of analysis of recent topographic and geologic maps of the United States Geological Survey and the Department of Water Resources. These changes are described later in this report. The names and areal code numbers of study area subdivisions are presented in Table 1. The subdivisions are shown on Figure 2, "Area of Investigation".

TABLE 1

NAMES AND AREAL CODE NUMBERS OF
HYDROLOGIC AREAS

Areal Code	Designation
W-18.00	Coyote Hydrologic Unit
W-28.00	Mojave Hydrologic Unit
W-28.BO	Upper Mojave Hydrologic Subunit
W-28.CO	Middle Mojave Hydrologic Subunit
W-28.DO	Harper Hydrologic Subunit
W-28.EO	Lower Mojave Hydrologic Subunit*
W-28.G1	Caves Hydrologic Subarea
X-01.00	Lucerne Hydrologic Unit

^{*}Troy Hydrologic Subunit has been combined with Lower Mojave Hydrologic Subunit for this study.

Each subdivision in Table 1 could be further segregated into a nonwater-bearing hill and mountain area and a ground water-bearing valley area. In this report the ground water-bearing valley area is referred to as the "ground water basin" or "basin" to distinguish it from the entire subdivision, which includes portions of the surrounding hills and mountains.

In most locations in this region, water-bearing areas are separated from each other by nonwater-bearing materials of hill and mountain areas and by bedrock highs, which created conditions of alluvial constriction. In some locations, the water-bearing areas are separated by surface drainage divides. The boundary conditions between the water-bearing areas, or basins, of the hydrologic subdivisions are presented in Table 2.

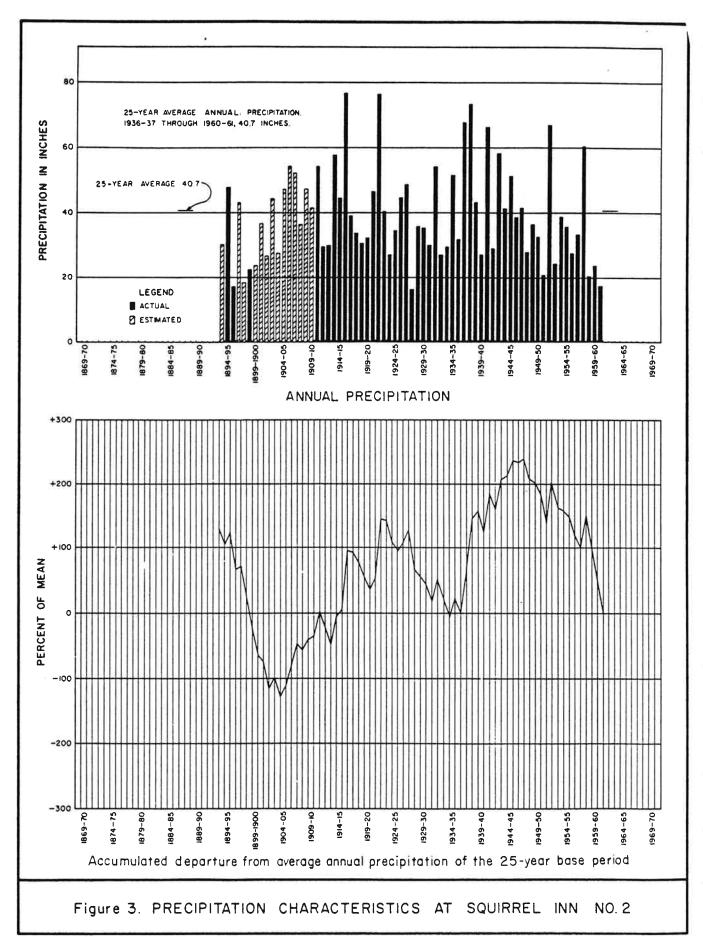
TABLE 2
BOUNDARY CONDITIONS BETWEEN BASINS

Basins :	Physical conditions at boundary
Upper Mojave-Lucerne	Drainage divide and alluvial constriction
Lower Mojave-Middle Mojave	Drainage divide and alluvial constriction
Lower Mojave-Caves	Drainage divide Drainage divide Alluvial constriction Drainage divide Drainage divide

The most significant changes in boundaries which resulted from the recent topographic coverage were made to boundaries of the Lower Mojave Basin and Lucerne Basin. Previously, the boundary between the Lower Mojave Basin and Troy Basin was represented by a low relief surface

drainage divide. Because there is no restriction to ground water movement across this divide, and because restrictions do occur elsewhere in these two divisions, Troy Basin has been included as part of the Lower Mojave Basin for this study. The boundaries of the Caves Basin, Coyote Basin, and Lower Mojave Basin were also revised considerably on the basis of the recent detailed topographic mapping, although the hydraulic characteristics which determine these divisions remain basically the same. The boundary between the Lucerne Basin and the Upper Mojave Basin was also revised on the basis of topographic criteria; the boundary now follows the surface drainage between Apple Valley and Rabbit Lake.

Base Hydrologic Period


In any watershed, precipitation is the original source of local water supply; therefore, the amount of precipitation to a ground water basin and its tributary areas serves as an index of the water supply available to that basin. By analysis of long-time precipitation records, it is possible to select as a "base period" a relatively short and recent period which represents the long-time average water supply. Such a period is needed for study purposes because long-time hydrologic data, other than rainfall records, are generally unavailable.

The base period conditions should be reasonably representative of long-time hydrologic conditions and should include both normal and extreme wet and dry years. Both the beginning and the end of the base period should be preceded by a series of wet years or a series of dry years, so that the difference between the amount of water in transit within the zone of aeration at the beginning and end of the base period would be a

minimum. The base period should also be within the period of available records and should include recent cultural conditions as an aid for projections under future basin operational studies.

For this study, the base hydrologic period was determined from analysis of records of a precipitation station in the San Bernardino Mountains, the major area of water supply to the basin. The accumulated departure from the mean precipitation at this recording station appears to start during a dry period (1893-94), and it continues through 1960-61. It includes the 57-year period from 1904-05 through 1960-61, which covers two cycles of wet and dry periods. This 57-year period was selected as that which best represents the long-time hydrologic conditions in the Mojave River region.

On the basis of the criteria stated in preceding paragraphs, the water years 1936-37 through 1960-61 were chosen as the base hydrologic period. This 25-year period includes the most recent pair of wet and dry cycles; has an average annual precipitation (at Squirrel Inn No. 2) of 40.7 inches, which closely approximates the estimated long-time period average of 41.7 inches; begins and ends after a series of dry years; is within the period of available data; and includes recent land use conditions. The precipitation characteristics at the Squirrel Inn No. 2 Station are shown on Figure 3. Because of the similarity of hydrologic conditions (dry trends) preceding 1936-37 and 1960-61 and because valley precipitation averaged less than 6 inches annually, the assumption could be made that there was no significant change in the amount of water in transit at the beginning and end of the base period. In view of this, the difference in the amount of water percolating downward through the

zone of aeration to the zone of saturation was considered to be negligible for both periods. This assumption facilitated computation of changes in the amount of ground water storage during the base period.

CHAPTER II. GEOLOGY

In this investigation, the geology studies included a detailed examination of the physiography, stratigraphy, and structure of the area. The primary objective of these studies was to develop a better understanding of the water-bearing formations of the area and to determine the occurrence, movement, and quality of ground water within the formations. To meet this objective, geologic formations and structures were inspected and were correlated with geologic units delineated by previous studies. An areal geology map of the study area was then prepared and lithologic units were grouped according to general water-yielding characteristics. Water well logs, water quality data, water level data, and aquifer test information were evaluated, along with data obtained from interviews with local water well drillers. The results of these studies are summarized and discussed in the following paragraphs.

Physiography

The Mojave study area is an alluviated plain that slopes gently northward and eastward. Bordering the plain are the San Bernardino Mountains on the south; the Fry, Rodman, and Cady Mountains on the east; the Alvord Mountains, the Paradise Range, the Calico Mountains, the Rainbow Hills, and the Gravel Hills on the north; and the Kramer Hills and the Shadow Mountains on the west.

The high San Bernardino Mountains are essentially nonwater-bearing crystalline and metamorphic rock. These mountains contribute the major

amount of runoff to the ground water basin; they also are the source of the bulk of the alluvial debris deposited in the valley areas. Minor amounts of both runnoff and alluvial debris are contributed by the low mountains and hills interspersed throughout and bordering the basin.

The principal stream traversing the study area is the Mojave River, which originates in the San Bernardino Mountains, and flows north and east about 110 miles, terminating in Silver Lake, about 20 miles outside the study area.

Other important features of the study area are the Upper and Lower Narrows of the Mojave River, where rising ground water occurs as the result of constrictions in the cross-sectional area of the water-bearing materials. Physiographic features are shown on Plate 1, "Physiographic Features and Lines of Equal Average Annual Precipitation"; detailed areal geology is shown on Plate 2, "Areal Geology".

The Mojave River ground water basin is the subsurface reservoir which yields water to wells drilled in the area. The ground water basin area, or valley fill area, contains shallow, permeable alluvial deposits, and is underlain and surrounded by relatively impermeable rock. These features are shown on Plate 3, "Geologic Sections".

Stratigraphy

Geologic units of the region are grouped under two broad categories according to their water-yielding characteristics: water-bearing and nonwater-bearing. A crystalline complex of pre-Tertiary igneous and metamorphic rocks that characteristically yields little water to wells forms the major portion of the mountain and hill areas surrounding the water-bearing portions of the study area. These formations, which are considered

ments are unconsolidated to semiconsolidated alluvial deposits that are Quaternary in age, continental in origin, and made up primarily of materials ranging in size from coarse gravel to clay. These sediments are generally more consolidated with depth, and commonly exhibit cementation in the older formations. Interspersed within, and overlying these sediments, in local areas are nonwater-bearing volcanic deposits.

Water-Bearing Formations

The water-bearing deposits of the area result primarily from deposition of alluvial material eroded from the adjacent highlands. The streams carry debris onto the valley floor during flood flows, forming alluvial fans at the base of the mountains by dropping the coarse particles first. As the distance from the mountains becomes greater, the sediment-carrying capacity of the stream becomes less, resulting in deposition of finer grained sediments. Usually only the silts and clays reach the central or lowest portions of the basins. Generally, the coarser alluvial fan deposits and deposits within the streambed are more permeable and result in higher yield to wells, whereas the fine-grained deposits do not yield water readily. The older deposits have undergone chemical weathering and compaction and have been cemented to some degree, all of which tends to reduce the permeability of the materials.

The Mojave River has interrupted this general deposition pattern by traversing the study area, cutting a channel through both coarse-and fine-grained materials, and then backfilling with coarse-grained river channel deposits. These latter deposits are highly permeable and contain the major source of the water supply used at present in the study area.

Within the study area, the water-bearing materials include 11
lithologic units that range in age from Recent to Pleistocene; these units
include: river deposits, playa deposits, dune sand, younger alluvium,
younger fan deposits, old lake and lakeshore deposits, older alluvium, older
fan deposits, landslide breccia, Shoemaker gravel, and the Harold Formation.
Figure 4, "Generalized Stratigraphic Column of Water-Bearing Sequence,
Mojave River Area" shows the stratigraphic sequence of the water-bearing
formations or units, their lithology, and the maximum thickness of each
formation or unit. The major characteristics of these water-bearing lithologic units are discussed in the following paragraphs.

River Deposits. Boulders, gravel, sand, and silt, with some interbeds of clay and sandy clay, occupy the channel of the Mojave River. The deposits are unconsolidated, unweathered, and range up to 90 feet in thickness. The river deposits form the most important aquifer in the study area. A majority of the irrigation and municipal water wells in the region draw water from this aquifer. These wells yield water at an average rate of 500 gallons per minute, although some wells yield as much as 1,600 gallons per minute. In addition, ground water in the river deposits is a major source of replenishment to the other ground water areas, through subsurface flow.

Playa Deposits. Playa deposits underlie the surfaces of the dry lakes in the study area. The deposits are fine sand, silts, and clays, which range in thickness from a few feet to about 25 feet. These fine-grained materials generally have a low permeability and, even when saturated, will yield only small quantities of water to wells. These materials generally

SYSTEM	SERIES	GEOLOGIC FORMATION	LITHOLOGY	MAXIMUM THICKNESS (FEET)
	T	RIVER DEPOSITS	000	90±
	z	PLAYA DEPOSITS	Ор <u></u>	25 ±
	CE	DUNE SAND	Ods:	35±
>	R E	YOUNGER ALLUVIUM	0.001 -0	100±
		YOUNGER FAN DEPOSITS	Oyl o	75 ±
œ		OLD LAKE & LAKESHORE DEPOSITS	Qol	75±
N A	ш	OLDER Alluvium		1000±
T E R	TOCEN	OLDER FAN DEPOSITS	9/90//0/00 90/0/0//0/0/0/0/0/0/0/0/0/0/0	1000±
٩	s -	LANDSLIDE BRECCIA	DADA DADA DADA DADA DADA DADA DADA DAD	100±
n	PLE	SHOEMAKER GRAVEL	000000000000000000000000000000000000000	300±
O		HAROLD FORMATION	Oh	1300±

LEGEND

WWW UNCONFORMITY

Fig. 4. GENERALIZED STRATIGRAPHIC COLUMN OF WATER-BEARING SEQUENCE, MOJAVE RIVER AREA

exhibit high concentrations of total dissolved solids, ranging from 380 to 5,300 parts per million.

<u>Dune Sand</u>. Sand dunes are present in all of the basins, commonly near the playas and adjacent to the Mojave River. Typical deposits are found downstream of Hodge and in Hinkley Valley. These deposits range in thickness from a few feet to as much as 35 feet. The dunes are porous and permeable and suitable for storage of ground water; however, they are above the existing water table.

Younger Alluvium. Younger alluvium occurs as a veneer overlying large portions of the older materials, and occupies small stream channels tributary to the Mojave River. The deposits are made up of material ranging in size from very small to large and are usually unweathered sands and silts, plus some gravel and clay. The younger alluvium ranges in thickness from a few inches to about 100 feet. Not only are the deposits less prolific water producers than the river deposits but yields are usually less than 300 gallons per minute. Large portions of the younger alluvium are above the water table, or only partially saturated.

Younger Fan Deposits. Unconsolidated younger fan deposits are located at the base of the highland areas, usually above the water table. These deposits are poorly-sorted gravel and sand with some silt and clay. The younger fan deposits range in thickness from a few inches to about 75 feet. They occur extensively as a thin veneer at the base of the desert mountain ranges, overlying bedrock. Reworked older material has been deposited as alluvial fans at the base of the bluffs adjacent to the Mojave River.

These are partially saturated, and wells penetrating them vary in yield from a few gallons per minute to about 1,200 gallons per minute.

Old Lake and Lakeshore Deposits. Old lake deposits of well-bedded silts, clays, and sands, interbedded with thin fresh-water limestones are exposed at four separate areas along the Mojave River: (1) in the bluffs at Victorville, (2) along the river northwest of Helendale, (3) in the low hills south of Barstow, and (4) in the bluffs of the Mojave River at the Caves Basin near Manix. Water well logs indicate the presence of blue and green clays which suggests that lake deposits underlie Hinkley and Harper Valleys. The Old Lake and Lakeshore deposits range in thickness from a few inches to about 75 feet. Lake deposits yield little water to wells, but may act as confining layers for deeper water-bearing materials.

Lakeshore deposits are remnants of sand and gravel bars of lite Pleistocene lakes. These deposits, which are found south and east of Coyote Lake and near Manix, are above the water table.

O'der Alluvium. Older alluvium underlies most of the study area.

The unconsolidated to moderately consolidated deposits are interbedded gravel, sand, silt, and clay. The deposits are weathered, and some cementation has developed, usually in the form of caliche.

The older alluvium ranges in thickness from a few inches to about 1,000 feet and contains the major portion of ground water in storage in the area. Generally, the alluvium yields water freely to wells; however, in some areas the materials are poor in their water-yielding characteristics. A few wells in the vicinity of Hesperia and near Daggett produce more than 2,000

gallons per minute from older alluvium; in contrast, water wells in older alluvium north of Adelanto characteristically yield 30 gallons per minute or less.

Older Fan Deposits. Deposits of older fans are exposed irregularly throughout the region, but generally occur near the flanks of the highland areas. The deposits include gravels, sands, and silts, which in some areas, are cemented with caliche deposits. The materials are moderately consolidated, and in some places, deeply weathered. Maximum thickness is estimated to be 1,000 feet. Records of the few wells known to penetrate older fan material indicate that the yield varies considerably, but is generally low.

Landslide Breccia. In the southeasterly portion of the Lucerne Basin, on the flank of the San Bernardino Mountains, is a large slide deposit which apparently occurred during Pleistocene time. This area, known as the Blackhawk slide, contains primarily poorly-sorted and partially cemented blocks of limestone. Maximum thickness is estimated to be 100 feet. There are no known water wells in the landslide. If saturated, the breccia would probably have low water-yielding capacity.

Shoemaker Gravel. The Shoemaker gravel is a deposit of poorly-sorted, subangular gravel with lenses of sand and silt that underlies older alluvium and overlies the Harold Formation in depths of as much as 300 feet. Although some unused water wells penetrate the Shoemaker gravel, it generally lies above the water table and there are no known wells extracting from it. However, if it were saturated it probably would yield water freely.

Harold Formation. The Harold Formation is exposed in the bluffs facing south near the crest of Cajon Pass as a series of discontinuous beds

of grayish silty sandstone with lenses of conglomerate, and occasional thin beds of clayey silt; it is approximately 1,300 feet thick.

The Harold Formation apparently yields little water to wells, as indicated by two known wells that produce less than 20 gallons per minute.

Nonwater-Bearing Formations

Pre-Tertiary crystalline rocks enclose the entire study area and comprise the major portions of the mountain and hill areas; the area also includes consolidated Tertiary sedimentary and volcanic rocks and Quaternary basalt. The crystalline complex and the Tertiary deposits also underlie the valley areas, but are buried by the unconsolidated Quaternary alluvial deposits that comprise the water-bearing formations.

In the mountain and hill areas, the rocks may be the only source of water; however, because the yield from wells is typically less than 50 gallons per minute, these formations are considered to be essentially nonwater-bearing. In addition to being poor storage reservoirs, these formations also act as impediments to ground water movement. The nonwater-bearing units, listed generally from younger to older, include: Quaternary basalt, Tertiary sedimentary rocks, Tertiary volcanic rocks, and the basement complex. The major characteristics of these nonwater-bearing lithologic units are discussed in the following paragraphs:

Quaternary Basalt. Abundant outcrops of Quaternary volcanic rocks with thicknesses ranging from a few inches to about 265 feet are located in the Black Mountain area north of Harper Lake, in a long belt extending south of Troy Lake, and in the Rodman Mountains. The dominant rock type is basalt,

which occurs as vesicular to dense basalt dikes and flows, associated with some cinders, and local deposits of scoriaceous tuff. In the study area, all of these deposits occur above the regional water table. They are not tapped by any known wells, and therefore are not a significant source of ground water. However, water is yielded freely from basalt deposits in other localities through springs.

Tertiary Sedimentary Rocks. The Tertiary continental sedimentary deposits identified in the study area range in age from Miocene to Pliocene and range in thickness from a few inches to about 4,800 feet. Major outcrops occur in the mountain and hill areas northeast of the Lockhart fault and some isolated exposures occur in the Kramer Hills.

These consolidated rocks consist of water-deposited conglomerates, sandstone, siltstone, mudstone, limestone, agglomerates, and volcanic tuffs. In the study area, these formations do include pervious layers, but the water they contain is generally of poor quality and yields from wells are low. Because of their fine grain size and low porosity, the limited recharge they receive in outcrop areas, and the great depths at which they occur in the valleys, these deposits are considered to be nonwater-bearing.

Tertiary Volcanic Rocks. Tertiary volcanic rocks consist of extrusive and intrusive rock of various compositions, interbedded with Tertiary continental sedimentary rocks. These formations occur in large and small outcrop areas in the mountain and hill region predominantly northeast of the Lockhart fault, and in small, isolated areas within the Kramer Hills. These rocks yield little water to wells and are considered to be nonwater-bearing.

Basement Complex. Basement rocks of the study area are a highly complex assemblage of pre-Tertiary crystalline and metamorphic rocks that are exposed in the mountain and hill areas, and underlie the younger deposits of the valley areas. These rocks are generally nonwater-bearing, but locally yield small-to-moderate quantities of water from springs, cracks, and from a few shallow wells in the residuum.

Structures Affecting Ground Water Movement

Geologic structural features, which affect ground water movement, include anticlines, synclines, faults, and valleys or topographic highs formed by folding or faulting. Within the area of investigation, structural features which affect ground water movement are generally obscured by alluvial cover and are not well defined on the surface. The exceptions are the San Bernardino Mountains, a high, rugged east-west trending uplifted block of the San Andreas fault system, and the other more subdued highland areas which generally form the internal and external borders of the Mojave River Ground Water Basin. The general nonlinear alignment of these highlands indicates that, in the main, the alluvial valleys owe their formation to normal erosional processes rather than to faulting, and the irregular, barren hills and mountains are stubborn, erosion resistant remnants. However, the greater depths of fill that occur in certain parts of the basin can be satisfactorily explained only by the assumption of faulting and folding.

At several places along the Mojave River channel, shallow alluvial sections underlain by near-surface, topographically-high masses of bedrock obstruct ground water underflow and serve to perpetuate conditions of rising ground water. This rising ground water condition occurs at four locations: the Upper Narrows, Lower Narrows, near Camp Cady, and at Afton.

The major faults within the study area which impede and affect the flow of ground water significantly are the Helendale fault, the Lockhart fault, and the Calico-Newberry fault. These three northwest-southeast trending faults are associated with, and subordinate to, the dominating San Andreas and Garlock fault systems. The locations of these faults are shown on Plate 2, "Areal Geology". The major characteristics and the principal structural influences of these faults are discussed in the following paragraphs:

Helendale Fault

The active Helendale fault extends northwest from the vicinity north of Baldwin Lake to the southeast flank of the Kramer Hills, a distance of over 45 miles. Directly east of the Kramer Hills and north of the northwest end of the Helendale fault trace is an unnamed fault, which extends in a general northwest direction for over 30 miles. This unnamed fault may be part of the Helendale fault system; however, due to the lack of supporting evidence, definite conclusions cannot be drawn.

Ground water levels in the vicinity of the Helendale fault indicate that it impedes the movement of ground water. This is particularly true in the Lucerne Basin where differences of 48 feet in water levels have been measured in wells 250 feet apart on either side of the fault. Table 3 includes water level data for wells on both sides of the fault.

In Lucerne Basin, the highest water levels are on the western side of the fault. These levels occur near the northwest end of the fault trace where ground water flowing northeasterly spills over the fault. Some flowing wells are in the vicinity, as indicated in Table 3.

In the Middle Mojave Basin, where the Helendale fault crosses the Mojave River, ground water levels indicate that the fault impedes ground water

TABLE 3

WATER LEVEL DATA FOR WELLS ADJACENT TO HELENDALE FAULT IN LUCERNE BASIN

State well number	Date of observation	:	Depth of well, in feet	:	Depth to water, in feet	Elevation of ater in well, in feet
Southwesterly	of the Fault					
4N/1W-10A1 4N/1W-10H2 4N/1W-10R2 4N/1W-11Q3 4N/1W-14B2 4N/1W-14K2 4N/1W-14Q4	4-15-54 2- 9-54 2-10-54 2-10-54 2- 2-54 2-16-54 2-17-54		568 168 250 250 100 219 129		4 8 0.2 Flowing 10 Flowing 18	2,903 2,902 2,930 Flowing 2,930 Flowing 3,012
Northeasterly 4N/1W- 2P1 4N/1W-11B1 4N/1W-11J1 4N/1W-11Q1 4N/1W-13M1 4N/1W-14A2 4N/1W-14H1	of the Fault 11-18-54 4-14-54 4-14-54 3-15-55 11-23-54 2-3-54 2-16-54		410 376 300 85 140 44		60 45 53 51 112 74 44	2,808 2,840 2,872 2,882 2,803 2,891 2,936

movement in the older alluvium, but not within the Recent channel deposits of the Mojave River. Upstream from the fault, rising water contributes to the Mojave River; downstream of the fault this condition is reversed.

Lockhart Fault

In the area of investigation, the Lockhart fault extends northwest from the southwest flank of the Fry Mountains to the extreme northwest portion of the study area, a distance of over 70 miles. The fault trace continues for another 15 miles beyond the study area. The Lockhart fault impedes the movement of ground water in the Harper Basin and in older alluvium within Hinkley Valley in the Middle Mojave Basin. Although the paucity of water wells

in the Harper Basin precludes quantitative estimates of this impediment, the generally higher level of the water table southwest of the fault suggests the fault impedes ground water flow. Ground water level data for wells adjacent to the Lockhart fault in the Harper Basin are shown in Table 4.

TABLE 4
WATER LEVEL DATA FOR WELLS ADJACENT TO LOCKHART FAULT

State well number	Date of observation	Depth of well, in feet	Depth to	: Elevation of :water in well, : in feet
Southwesterly	of the Fault			
10N/4W-8P1	1- 7-59	7 89	18	2,007
Northeasterly	of the Fault			
lon/4w- 4cl lon/4w- 6Al lon/4w-loal	5-27-59 5-19-59 5-20-59	419 250 325	160 250 187	1,940 1,870 1,933

Although there is no surface trace of the Lockhart fault in Hinkley Valley, the extension of the trace from Harper Basin coincides with the southwest flank of a deep pumping hole in Hinkley Valley. The steep gradient of that flank indicates an effective impediment to ground water flow.

Calico-Newberry Fault

The active Calico-Newberry fault trends northwest from the northeast flank of the Rodman Mountains to, and along, the southwest flank of the Calico Mountains, a distance of over 35 miles.

water level measurements in wells indicate the Calico-Newberry fault impedes the movement of ground water in Lower Mojave Basin except along the northwestern portion of the fault, from the Mojave River to just east of the community of Yermo. In that portion of the fault area, little difference was observed in the water levels on either side of the fault. On

the other hand, ground water level elevations measured in wells adjacent to either side of the fault southeast of the Mojave River indicate a marked difference in levels. In this area, the water levels south of the fault are higher than those north of the fault. Representative ground water level data are listed in Table 5.

TABLE 5

WATER LEVEL DATA FOR WELLS ADJACENT TO CALICO-NEWBERRY FAULT

State well number	Date of observation	Depth of well, in feet	Depth to	Elevation of water in well, in feet
Southwesterly	of the Fault			
9N/2E- 3C1 9N/2E-11H1 9N/2E-13Q1 9N/3E-19P1 9N/3E-29G1 9N/3E-33E1	1-13-60 1-12-60 12- 7-60 3-24-60 3-24-60 8- 8-61	63 230 151 304	17.5 17.5 14.6 8.6 11.2 Flowing	1,853 1,848 1,855 1,847 1,839 1,830
Northeasterly	of the Fault			
9n/2e- 3A2 9n/3e-18M1 9n/3e-20Q1 9n/3e-29A1 9n/3e-34N1	3-23-60 12-16-59 6- 2-60 3-24-60 12-17-59	65 253 390 90 99	40.1 54 58 68.2 23.1	1,845 1,860 1,845 1,846 1,818

CHAPTER III. WATER SUPPLY, USE, AND DISPOSAL

Hydrologic studies of water supply, use, and disposal are essential in evaluating the surplus or deficiency of the water supply and in determining the overdraft and safe yield. These studies, which are discussed and summarized in this chapter, include analyses of precipitation, surface flow, subsurface flow, import-export of water, and consumptive use. For these studies, the 25-year base period from 1936-37 through 1960-61 was used. (The selection of this base period is discussed in Chapter II.)

In the study area, data sufficient for these hydrologic studies are available in areas along the Mojave River and the adjacent valleys that constitute the Upper Mojave, Middle Mojave, Lower Mojave, and Lucerne Ground Water Basins. The limited amount of data that are available on the other three basins--Harper, Coyote, and Caves--does not permit comparable analyses. Where information is available, it is included in the following text and tables as a matter of interest.

For most items of water supply, use, and disposal, the historical data on the annual amounts for each year of the base period were available for the four major basins. For some items, such as subsurface inflow and outflow across basin boundaries, the surface inflow from the desert mountain area, it was necessary to estimate the average annual amounts.

Water Supply

The ground water basins discussed in this report are equivalent to the water-bearing portions of the study area. Plate 4, "Ground Water

Basins and Effective Base of Fresh Water", shows the boundaries of each of the basins in the study area.

For this study, sources of water supply are considered to be precipitation falling on the ground water basins and surface, subsurface, and import waters flowing into the basins.

Because the basins are interrelated, a part of the surface and subsurface inflow and the imported water supply to one basin may originate as outflow or as exported water from other basins. For this reason, water supply to and within the total study area from these sources is discussed as surface flow, subsurface flow, and import-export water.

Because the amount of pumped ground water which is not consumptively used is assumed to return to the ground water basin, this amount could be considered as water supply. However, because pumped ground water cancels out as a factor in the overall hydrologic equation when surface and ground water supplies are considered together, it is not discussed here as an item of supply, but is included later in this chapter as an item of water use and disposal.

Precipitation

The average annual precipitation in the study area ranges from less than 4 inches on the desert valley floor to over 40 inches in the San Bernardino Mountains. This range in average annual precipitation is shown on Plate 1. The data utilized on this map were prepared by the U. S. Weather Bureau as part of its meteorological studies of the southwestern United States.

Records of two long-term precipitation stations in the study area indicate a similar wide range in average annual precipitation. At Barstow, on the desert valley floor, the average annual rainfall is

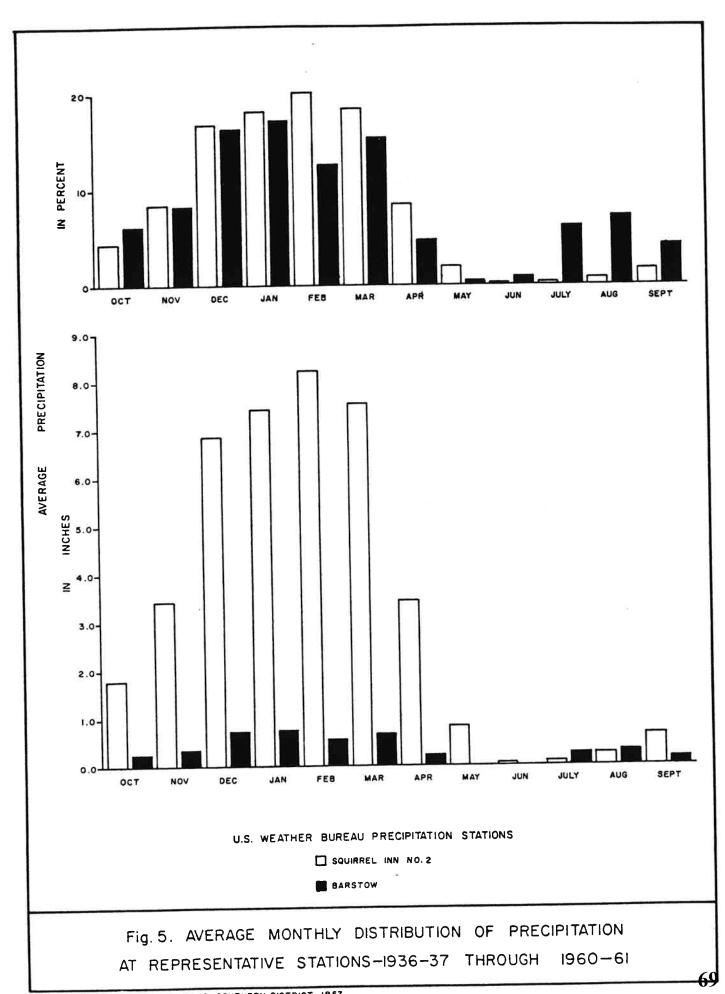


TABLE 7
ESTIMATED AVERAGE ANNUAL PRECIPITATION
BY AREA*

Location	:	Area, in acres	:	Precipitation, in inches
Mountain Areas				
San Bernardino Mountains		169,600		24.6
Desert Mountains				, n
Upper Mojave Basin		46,800		6.4
Middle Mojave Basin		107,500		6.1 🗸
Lower Mojave Basin		136,900		6.9
Lucerne Basin		71,600		7.6
Harper Basin		100,800		6.7
Coyote Basin		66,100		7.8
Caves Basin		34,000		5.7
Valley Areas				
Upper Mojave Basin		371,100		6.3
Middle Mojave Basin		260,500		5.0
Lower Mojave Basin		259,200		4.2
Lucerne Basin		190,100		6.4
Harper Basin		297,200		4.5
Coyote Basin		99,900		5.0
Caves Basin		94,000		4.5

*For the base period

Rainfall in the area south of the town of Hesperia is -- in some years -- in excess of 8 inches and, therefore, contributes to the ground water supply. In this area, the average annual amount of precipitation exceeding 8 inches during the base period of the study was sufficient to provide to the land surface an estimated 4,500 acre-feet of water supply annually. The average annual amount of deep percolation from precipitation to the valley floor was estimated by applying a technique used by the Department in previous investigations. This technique relates deep percolation to the amount of precipitation, the evapotranspiration

requirements and soil moisture deficiency that must be satisfied above the selected 8 inch value, and the residual amount of runoff. The technique was developed from data used in studies reported in Department of Water Resources' Bulletin No. 33, "Rainfall Penetration and Consumptive Use of Water -- in Santa Ana River Valley and Coastal Plain", 1930, and in U. S. Department of Agriculture publication, "Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data", by Harry F. Blaney and Wayne D. Criddle of the Soil Conservation Service, dated August 1950.

Based on this technique, the amount of precipitation that may percolate was determined to be 3,850 acre-feet. However, to make allowances for any loss of this water as it passes from the root zone to ground water due to vapor transport, the amount of precipitation that percolates and becomes ground water was assumed to be 3,500 acre-feet.

Table 8 summarizes the estimated annual deep percolation of precipitation on the valley floor south of Hesperia during the base period. The occurrence of perched ground water in the same region confirms the occurrence of deep percolation as a source of water supply. However, the available data were not sufficient to define the magnitude and areal extent of the perched ground water body or to check the seasonal amounts of deep percolation from this source during the base period.

Surface Flow

Surface flow has two sources: base flow from the discharge of ground water to the stream channels and storm runoff from precipitation on the tributary hill and mountain areas. Base flow is found in four

TABLE 8

ESTIMATED SEASONAL DEEP PERCOLATION OF PRECIPITATION ON THE VALLEY FLOOR SOUTH OF HESPERIA DURING THE BASE PERIOD

In acre-feet

Water year	: Deep : percolation	Water year	: Deep : percolation
1936-37 38 39 40	3,50 0 2,000 350 0	1950-51 52 53 54 55	0 7,450 0 1,450
1940-41 42 43 44 45	30,150 0 5,600 30,550 1,000	1955~56 57 58 59 60	0 0 5,400 0 0
1945-46 through 1948-50	0	1960-61	0
		25-year average	3,500

reaches of the Mojave River. At the point of origin of the Mojave River, the confluence of the West Fork of the Mojave River and Deep Creek, base flow results from the perennial supply available from the drainage area of Deep Creek. At Victorville, Camp Cady, and Afton, base flow, or rising water results from constrictions in the alluvial section of water-bearing materials, which force the ground water to the surface of the stream channel.

Runoff enters the study area through stream channels or as overland flow. The sources of runoff from precipitation are the San Bernardino Mountains and the desert mountains on the valley floor,

shown on Table 7. In addition, as discussed earlier in the chapter, runoff from precipitation on the valley floor is a source of water supply in the area south of Hesperia.

Those stream gaging stations in the study area from which data were obtained for use in this report are presented in Table 9, by station name, length of record, and drainage area. In addition, the gaging station from the diversion site on Deep Creek to Hesperia is also listed. Although the records of the station at Beacon Creek near Helendale were not utilized in this study, it is part of the United States Geological Survey program to determine runoff characteristics for small drainage areas, which may provide valuable information in the future. Location of these stations is shown on Plate 1.

The principal surface flow in the study area is the Mojave River. The two major streams in the San Bernardino Mountains are Deep Creek and the West Fork of the Mojave River. These streams combine at the base of the mountains to form the Mojave River. This confluence is referred to as the forks. The flows in these streams are gaged by the U.S. Geological Survey about 1 mile upstream of their confluence. The records of the combined flow of the two streams and the diversion on Deep Creek are indicative of the flow of the Mojave River at the forks into the Upper Mojave Basin. The average annual flow at the forks during the base period was about 62,000 acre-feet, including diversion above the forks.

The major sources of surface inflow, or water supply to the basin, are the two forks of the Mojave River: Deep Creek and West Fork.

TABLE 9
STREAM GAGING STATIONS

	;	: Per	riod of red	cord	Drainage
Index No.*	Name ^a	From	То	: Incom- :plete or : missing : years	area, in
Active	Stations				
1^b	Deep Creek near Hesperia	1904-05	1960-61	9	137.0
2 ^c	West Fork Mojave River near Hesperia	1904-05	1960-61	9	74.8
3 ^đ	Mojave River at Lower Narrows, near Victorville	1898-99	1960-61	17	530.0
4	Mojave River at Barstow	1930-31	1960-61	0	f
5	Mojave River at Afton	1929-30	1960-61	21	f
6	Beacon Creek at Helendale	1959 - 60	1960-61	0	0.7
7	Cushenbury Creek near Lucerne Valley	1956-57	1960-61	1	6.4
Inactiv	re Stations				
8	Deep Creek Diversion	1950-51	1958-59	0	
9 ^e	Mojave River at Point of Rocks	1908-09	1910-11	2	f
10	Mojave River at Hodge	1930-31	1931-32	0	f

a. USGS gaging station unless otherwise noted.

b. Lake Arrowhead Company records as East Fork of Mojave River from 1904-05 through 1921-22; USGS records from 1929-30 through 1960-61.

c. Lake Arrowhead Company records from 1904-05 through 1960-61; USGS records from 1929-30 through 1960-61.

d. Lake Arrowhead Company records from 1904-05 through 1914-15; USGS records from 1898-99 through 1905-06 and from 1930-31 through 1960-61.

e. Lake Arrowhead Company records.

f. Not available.

^{*} These index numbers are as shown on Plate 1.

The flows in these forks are gaged about 1 mile upstream of their confluence at the forks, and the records of the combined flow of the two streams and the diversion on Deep Creek are considered indicative of the flow of the Mojave River at the forks. The flow at the forks essentially occurs at the boundary of the water-bearing material, although a portion of the area above the gage on the West Fork is underlain with water-bearing material. Consequently, some of the runoff from the San Bernardino Mountains has an opportunity to infiltrate and percolate to the ground water reservoir before it reaches the gage.

The average annual runoff at the forks during the base period was computed to be 62,000 acre-feet. The amount is about 16 percent less than the average annual amount for the entire period of record, which begins in 1904, and about 26 percent less than for the period 1904-05 through 1936-37 that includes one wet and one dry period. This shows that the runoff during the earlier time was more than during the base period. However, in previous studies of the selection of the base period, the average annual precipitation for these same periods was determined to be about equal. Because of this condition, it is reasonable to expect that the average annual runoff for the base period and the longer time would be about equal.

To determine whether or not the streamflow records should be adjusted to account for the difference in runoff, the records of the gaged stations at the forks were checked against records of other streams by applying a double mass curve technique commonly used by hydrologists.

The results showed that the data plot is a straight line and that the amounts of runoff at the forks are proportional to the amounts

occurring in other streams. Therefore, two conclusions were arrived at:
first, the runoff records of the Mojave River at the forks are accurate
over the entire period of record; second, the difference in the amounts
of runoff from comparable amounts of precipitation is apparently due to
the changing physical conditions and precipitation characteristics
affecting the precipitation runoff relationship of the drainage area above
the forks. Accordingly, the average annual runoff at the forks during
the base period is considered representative of the amount of water
supply to the basin under present physical conditions and precipitation
characteristics.

Because a small portion of the water-bearing material is above the gage on the West Fork of the Mojave River, some of the runoff from the San Bernardino Mountains percolates and becomes ground water before it reaches the gage. The amount that becomes ground water is considered as part of the surface flow of the Mojave River in this study. During the year, the average annual amount of ungaged runoff above the gage contributing to the water supply of the basin was estimated to be 1,150 acrefeet. This amount was determined by comparing the estimate of runoff for the West Fork drainage area with the gaged record at the forks. The estimate of runoff was based on the precipitation-runoff relationship discussed hereinafter and the amount of precipitation over the drainage area which was obtained from the isohyetal map.

For the balance of the ungaged portion of the San Bernardino Mountains, the average annual surface inflow from runoff was estimated to be 50 acre-feet to the Upper Mojave Basin and 600 acre-feet to the

Lucerne Basin. These estimates were determined by applying precipitation-runoff relationships discussed later in this chapter.

Although there is a gage on a 6.4 square mile drainage area of Cushenbury Creek, which is tributary to Lucerne Basin, the average annual amount of runoff in this area during the base period could not be determined from the short period of record. Therefore, the estimate of runoff from the San Bernardino Mountains to Lucerne Basin includes the amount from the Cushenbury Creek drainage area.

From the San Bernardino Mountains to Afton, the Mojave River crosses the boundaries between ground water basins, which are identified and discussed in Chapter II. At the basin boundaries, the flow of the Mojave River is surface outflow from the upstream basin or surface inflow to the downstream basin. There are four of these boundaries along the river: Helendale, Barstow, Camp Cady site, and Afton. Except at Barstow, the flow is a combination of storm flow and base flow. At Barstow, the flow is entirely storm flow from runoff originating in the San Bernardino Mountains.

There is no record of a stream-gaging station at the boundary between the Upper and Middle Mojave Basins which is near Helendale. However, flow data are available for stations at two nearby locations: less than three years of record at Point of the Rocks, about $1\frac{1}{2}$ miles downstream from the boundary, and two years of record at Hodge. These data were used to check the estimates of flow at the boundary.

The estimates of flow at the basin boundary near Helendale were based on: (1) a correlation developed from the flow data of the

Lower Narrows station and the Barstow station to be discussed next; (2) the criteria that, for the same amounts of annual flow entering the initial reach, the total amount of annual riverbed percolation in any number of reaches must equal the amount of riverbed percolation in the entire reach; and (3) the assumption that there is no change in the amount of storm flow in the reach between Victorville and Helendale because the majority of the storm flow occurs when there is base flow at Helendale. This correlation shows the relationship between the annual amounts of riverbed percolation and the annual amounts of flow at the Lower Narrows station, with riverbed percolation being computed as the difference in the annual amounts of gaged flow at the two stations. Therefore, knowing the annual flows at the Lower Narrows station, the annual amounts of riverbed percolation in the reach between the station and the boundary were determined. The annual amounts of flow at the boundary were determined by deducting percolation from flows at the Lower Narrows station. The average annual flow at the basin boundary during the base period was estimated to be 35,500 acre-feet.

The flow of the Mojave River is gaged at Barstow, about one-half mile downstream of the boundary between the Middle and Lower Mojave Basins. For study purposes, the flow at the gage is considered representative of flow at the boundary. The flow of the Mojave River at Barstow consists entirely of storm flow, 96 percent of which occurs from January through April. This storm flow originates as storm runoff in the San Bernardino Mountains above the forks and occurs when the storm runoff is of sufficient magnitude to reach Barstow. During the base period, the record

of the gage at Barstow indicates no flow occurred at the station during 13 of the 25 years of the base period.

Based on these records, the average annual flow of the Mojave River at Barstow was computed to be 21,450 acre-feet during the base period. The seasonal flow ranged from zero to 130,000 acre-feet in 1937-38. In addition, the records at the station were used for estimating the flow of the Mojave River at the basin boundary near Helendale, previously discussed, and at the basin boundary at the Camp Cady site, to be discussed next.

The Mojave River crosses the boundary between the Lower Mojave and Caves Basins near the abandoned Camp Cady which is approximately 5 miles southeast of Harvard. The flow in the river at this point comprises base flow (rising water at the constriction in the alluvial section) and storm flow. During the base period, the average annual flow at the boundary was estimated to be 12,200 acre-feet and comprised 11,300 acre-feet storm flow and 900 acre-feet base flow.

In determining the average annual flow, it was first necessary to estimate the average annual storm flow by applying the same technique used in analyzing the flow of the Mojave River near Helendale. Where, (1) knowing the annual flows at the Barstow station, (2) based on a correlation developed from the flow data of the Earstow station and Afton station to be discussed next, and (3) based on the same criteria presented in analyzing the flow of the Mojave River near Helendale, the annual amounts of storm flow were estimated and the average annual storm flow determined to be 11,300 acre-feet.

The paucity of data precludes an analysis to determine the base flow at the boundary and, therefore, the average seasonal amount of base flow was assumed to be the same amount as at the Afton gage.

The flow of the Mojave River is gaged at the basin boundary at The flow at the station is the amount leaving the study area and comprises base flow (rising ground water at the constriction in the crosssectional area of water-bearing materials at Afton Canyon) and storm flow. The storm flow at the station is a combination of runoff originating in the San Bernardino Mountains and runoff from local summer storms. The major portion of the storm flow originates in the San Bernardino Mountains. During the base period, flow at Afton was recorded only for the years 1952-53 through 1960-61; therefore, it was necessary to estimate the flow for the other 16 years of the base period. Flow data prior to the base period, from January 1930 through September 1932, and ground water level data during the missing 16 years of record between the Barstow and Afton stations aided in estimating the annual flow during the base period. Based on these data, the annual amounts for the 16 years of missing record were determined, and the average annual storm flow at Afton from the runoff originating in the San Bernardino Mountains was estimated to be 8,650 acre-feet. In addition, the average annual storm flow at Afton due to local summer storms was determined by a study of the magnitude and frequency of the amounts found in the 9 years of record at the station. From this study, the average annual storm flow from local summer storms was determined to be 50 acre-feet.

The annual base flow during the missing years of record was estimated by establishing a relationship between the base flow for the years of record and ground water level data at nearby wells. Based on this relationship, the base flow for the 16 years of missing record was determined, and the average annual base flow was estimated to be 900 acre-feet. Combined with the storm flow at the station, the average annual flow at the boundary where the Mojave River leaves the study area was estimated to be 9,600 acre-feet.

The average annual flows of the Mojave River at the various basin boundaries are shown in Table 10.

TABLE 10

AVERAGE ANNUAL FLOWS AT THE BASIN BOUNDARIES

Basin boundary	In acre-fe	et
At the Forks Near Helendale At Barstow* Camp Cady Site At Afton*	62,000 35,500 21,450 12,200 9,600	

^{*}Stream-gaging station.

The ungaged desert mountains on the valley floor contribute runoff to the water supply of the basins. This runoff constitutes about five percent of the total water supply of the study area. However, it is an important source of water supply to the basins that do not border the Mojave River. Estimated average annual runoff to these three basins -- Lucerne, Harper, and Coyote -- amounted to 450 acre-feet, 550 acre-feet,

and 450 acre-feet during the base period. This is the only source of surface inflow to Harper and Coyote Basins; Lucerne receives additional runoff from the San Bernardino Mountains.

The amount of runoff from the ungaged desert mountains to the basins was estimated from an average seasonal precipitation-runoff relationship which was developed by adjusting a curve of the relationship for various streams in Southern California to reflect local conditions in the Mojave Desert region. The adjustment was made by creating a curve parallel to the original curve. The amount of offset from the original curve was based on the relationship of the average annual precipitation and runoff of the Deep Creek drainage area to the average of various streams in Southern California. Values of percent runoff for different depths of average annual precipitation used in estimating the runoff from ungaged drainage areas in the current studies and in the preliminary studies are presented in Table 11. By applying these values to the average annual precipitation on the various ungaged areas, the average annual surface inflow to the basins could be determined.

TABLE 11

AVERAGE PRECIPITATION-PERCENT RUNOFF VALUES

Average annual	:	Average annual runoff,
precipitation, in inches		in percent of precipitation
10		3.1
9		2.6
8		2.1
7		1.7
6 or less		1.0

As discussed earlier in the chapter, runoff from precipitation on the valley floor south of Hesperia percolates and becomes ground water. This is a source of water supply and, for this study, is considered surface inflow to the Upper Mojave Basin. The estimate of the average annual amount was based on the precipitation-runoff relationship discussed previously, modified for slope and soil conditions. The area of the valley floor south of Hesperia is flatter and composed of more permeable older alluvium than the steep and crystalline rock drainage areas used in originally developing the curve; therefore, it is reasonable to expect less runoff to occur in this area for equal amounts of precipitation. Analysis of limited data suggests that the amount of runoff is about half the amount determined from the precipitation-runoff relationship. On this basis, the average annual runoff from precipitation on the valley floor south of Hesperia during the base period was estimated to be 1,350 acre-feet. Most of this amount percolates in the many natural channels and becomes ground water in the area. However, because small amounts may be consumptively used by native vegetation, the amount of this runoff that becomes water supply to the Upper Mojave Ground Water Basin was assumed to be 1,000 acre-feet.

The flow of the Mojave River at the basin boundaries, the runoff from desert mountains on the valley floor, and runoff from precipitation on the basin as surface inflow to the Upper Mojave, Middle Mojave,
Lower Mojave, and Lucerne Basins are summarized in Table 12.

TABLE 12 ESTIMATED SURFACE INFLOW DURING THE BASE PERIOD

acre-	

	·	т	o Upper I	jave Basin	<u> </u>		To Mid	ldle Mojave	Besin	To Lo	wer Mojave	Basin	: To	Lucerne Bast	
Water	:From:			:From:			Prom:			From:					
year	: San B : At the : forks	ermardino Mo : Above ; :West Fork;	Other	Desert Mountains	Valley Area	: Total	Mojave River	Desert Mountains	Total	Mojave River	Desert Mountains	Total	From: :San Ber- : nardino :Mountains	Mountaine	Total
1936-37	169,250	1,150	50	250	2,800	173,500	125,200	550	125,750	103,900	800	104,700	600	450	1,050
38	218,900	1,150	50	250	3,700	224,050	159,150	550	159,700	138,100	800	138,900	600	450	1,050
39	40,600	1,150	50	250	500	42,550	17,250	550	17,800	550	800	1,350	600	450	1,050
40	31,250	1,150	50	250	350	33,050	15,350	550	15,900	70	800	800	600	450	1,050
1940-41	161,200	1,150	50	250	2,800	165,450	118,950	550	119,500	96,000	800	96,800	600	450	1,050
42	26,100	1,150	50	2 50	400	27,950	13,700	550	14,250	100	800	900	600	450	1,050
43	150,000	1,150	50	2 50	2,800	154,250	104,700	550	105,250	91,000	800	91,800	600	450	1,050
بابا	86,850	1,150	50	250	1,900	90,200	60,300	550	60,850	36,250	800	37,050	600	450	1,050
45	70,850	1,150	50	250	1,150	73,450	39,500	550	40,050	22,100	800	22,900	600	450	1,050
1945-46	54,550		50	2 50	700	56,700	29,350	550	29,900	12,550	800	13,350	600	450	1,050
47	50,350	1,150	50.	250	1,150	52,950	17,150	550	17,700	2,900	800	3,700	600	450	1,050
48	16,750	1,150	50	250	150	18,350	10,550	550	11,100	0	800	800	600	450	1,050
49	26,150	1,150	50	250	400	28,000	8,350	550	8,900	0	800	800	600	450	1,050
50	15,550	1,150	50	2 50	250	17,250	7,650	550	8,200	0	800	800	600	250	1,050
1950-51	4,350		50	250	0	5,800	7,200	550	7,750	0	800	800	600	450	1,050
52	106,450		50	250	2,150	110,050	35,200	550	35,750	12,550	800	13,350	600	450	1,050
53	13,000		50	250	100	14,550	7,850	550	8,400	0	800	800	600	450	1,050
54	57,400		50	250	850	59,700	13,500	550	14,050	0	800	800	600	450	1,050
55	21,050	1,150	50	250	200	22,700	8,150	550	8,700	0	800	800	600	450	1,050
1955-56	19,100		50	250	100	20,650	7,750	550	8,300	0	800	800	600	450	1,050
57	23,750		50	250	150	25,350	7,100	550	7,650	0	800	800	600	450	1,050
58	151,950		50	250	2,200	155,600	54,150	550	54,700	20,050	800	20,850	600	450	1,050
59	20,850	1,150	50	250	200	22,500	6,800	550	7,350	0	800	800	600	450	1,050
60	8,750	1,150	50	250	0	10,200	6,350	550	6,900	0	800	800	600	450	1,050
1960-61	4,500	1,150	50	250	0	5,950	6,300	550	6,850	0	800	800	600	450	1,050
25-year	(20:					-1-				1		,	\		
average	61,980	1,150	50	250	1,000	64,430	35,500	550	(36,050	21,442	800	22,242	600	450	1,050

Estimated average annual inflow to: Harper Basin -- 550 acre-feet. (desert mountains)

Coyote Basin -- 450 acre-feet. (desert mountains)

Caves Basin -- 12,350 acre-feet. (12,200 acre-feet from Mojave River; 150 acre-feet from desert mountains)

Subsurface Flow

Primarily, ground water movement within the study area occurs parallel and adjacent to the Mojave River in a south to north direction. Minor subsurface movement occurs in alluvium adjacent to the hills and mountains. The prevailing ground water gradients generally conform to the regional slope of the land surface; however, in portions of the study area, the gradients are reversed. This reversed gradient is caused by pumping from ground water in storage.

Ground water can move across the boundaries of the basins within the study area and its subdivisions when the permeability of the subsurface materials, the hydraulic gradient, and the cross-sectional area are sufficient for movement to occur and provided there is no subsurface barrier. At some of the boundaries, data on the permeability, hydraulic gradient, and cross-sectional area were not available for computing the amount of subsurface flow. However, it is believed the limited extent of alluvial materials at these boundaries prohibits the movement of significant quantities of water.

There is no subsurface outflow from the study area. However, subsurface inflow into the study area apparently occurs at the southwest boundary of the study area, which is also the west boundary of the Upper Mojave Basin. Because information on the depth and nature of the alluvial materials and the hydraulic gradient at this location is lacking, no direct determination of the amount of this flow was possible. However, on the basis of analysis of the natural recharge to the ground water basin west of the Upper Mojave Basin (primarily from Sheep Creek which is outside the study area), it appears reasonable that some ground water moves into the study area across this boundary. For this study, it was

assumed that one-third of the estimated average seasonal runoff of Sheep Creek, less the average seasonal diversion to Phelan, percolated and moved easterly into the study area and the Upper Mojave Basin.

The amounts of underflow across the basin boundaries were determined from estimates of the factors in the equation, Q=TIW, which is based on Darcy's Law. In this equation, the subsurface flow (Q) is equal to the transmissibility (permeability times saturated aquifer depth) (T) of the subsurface materials, multiplied by the width of the cross-sectional area (W) through which the flow passes, and the slope, or the hydraulic gradient, (I) of the ground water at the cross-sectional area.

The estimates of underflow for each of the selected boundaries are listed in Table 13.

TABLE 13
ESTIMATED AVERAGE ANNUAL SUBSURFACE INFLOW

In acre-feet

Basin	:	Average annual amount during the base period
Upper Mojave from:		
West Boundary		850
Lucerne TOTAL		<u>100</u> 950
Middle Mojave from Upper Mojave		2,000
Lower Mojave from Middle Mojave		2,000
Harper from Middle Mojave		1,000
Coyote from Lower Mojave		1,000
Caves from Lower Mojave		1,000

Import-Export of Water

A small amount of water is imported from outside the study area to the town of Phelan, in the Upper Mojave Basin. Some water supply, as well as sewage, crosses the boundary from the Middle to Lower Mojave Basins within the City of Barstow.

The water supply for Phelan is imported by pipeline from the Sheep Creek drainage area which is in the San Gabriel Mountains just outside the study area. Although the major purpose of the imported water is for urban and suburban use, a portion may overflow into another pipeline for agricultural use when there is no available storage in the tank.

Records of the amount of water imported are fragmentary until late 1963, when a meter was installed. From this recent information, the average annual amount of imported water to Phelan during the base period was estimated to be 250 acre-feet.

The boundary between the Middle and Lower Mojave Basins passes through the City of Barstow, which is supplied with water pumped from wells in the two basins. The water is distributed by the Southern California Water Company. Based on information on the amounts pumped and the demand by population in each basin, it was established that some of the water extracted in the Middle Mojave Basin is transported across the basin boundary to service areas in the Lower Mojave Basin. The estimate of the average annual amount of water supply transported across the basin boundary during the base period was 700 acre-feet.

A second source of water exported from the Middle Mojave Basin is sewage that originated from the City of Barstow and was transported across the boundary to a treatment plant in the Lower Mojave Basin. The

smaller portion of the City is in the Middle Mojave Basin. The average annual amount of sewage exported from the basin is estimated to be 100 acre-feet. This estimate is based on the amount of applied water and its consumptive use, the population in the two basins, and the amount of flow through the treatment plant in 1961.

Table 14 summarizes the amounts of water imported to the Upper Mojave Basin from outside the study area and to the Lower Mojave Basin from Middle Mojave Basin.

TABLE 14
ESTIMATED AVERAGE ANNUAL AMOUNTS OF WATER IMPORTED
TO THE UPPER AND LOWER MOJAVE BASINS

In acre-feet

Basin		annual amount he base period
Upper Mojave (+ 1924. 700 Shaffice)	,	250
Lower Mojave from Middle Mojave:		
Water June 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(700)	
Sewage (TOTAL	(100)	800

In Table 15 is shown the annual supply and the 25-year average annual supply from each source of supply to each of the four main basins: Upper Mojave, Middle Mojave, Lower Mojave, and Lucerne. The estimated annual supply to each of the other three basins -- Harper, Coyote, and Caves -- is also indicated by footnote. Although there is insufficient hydrologic data available in these last three basins to make definite determinations of the amounts of water supply, estimates were made to provide an indication of existing conditions.

TABLE 15
ESTIMATED WATER SUPPLY DURING THE BASE PERIOD

In acre-feat

	:	Upper	Mojave	Basin		Middle Mojave Basin				:	Lower	Mojave B	Lucerne Basin				
Water year	Precipi- tation	inflow	Subsur- face inflow	Imported water	Total	Precipi- tation#	Surface	Subsur- face inflow	: Total	Precipi- tation*			Imported water	Total	Precipi- tation	Surface inflow	Total
	0 (00	172 500	060	250	183,300	1,250	125,750	2,000	129,000	900	104.700	2,000	800	108,400	150	1,050	1,200
1936-37		173,500	950 950	250	232,100	1,350	159,700	2,000	163,050	950	138,900	2,000	800	142,650	150	1,050	1,200
38	6,850	224,050	950	250	48,550	1,500	17,800	2,000	21,300	1,250	1,350	2,000	800	5,400	150	1,050	1,200
39 40	4,800 4,000	42,550 33,050	950 950	250 250	38,250	1,350	15,900	2,000	19,250	950	800	2,000	800	4,550	150	1,050	1,200
1940-41	36,950	165,450	950	250	203,600	2,000	119,500	2,000	123,500	1,850	96,800	2,000	800	101,450	150	1,050	1,200
42	4,100	27,950	950	250	33,250	1,650	14,250	2,000	17,900	1,400	900	2,000	800	5,100	150	1,050	1,200
43	11,650	154,250	950	250	167,100	1,500	105,250	2,000	108,750	1,100	91,800	2,000	800	95,700	150	1,050	1,200
111	36,850	90,200	950	250	128,250	1,350	60,850	2,000	64,200	850	37,050	2,000	800	40,700	150	1,050	1,200
45	6,350	73,450	950	250	81,000	1,700	40,050	2,000	43,750	1,300	22,900	2,000	800	27,000	150	1,050	1,200
1945-46	4,250	56,700	950	250	62,150	1,150	29,900	2,000	33,050	450	13,350	2,000	800	16,600	150	1,050	1,200
47	4,850	52,950	950	250	59,000	1,250	17,700	2,000	20,950	500	3,700	2,000	800	7,000	350	1,050	1,400
48	4,800	18,350	950	250	24,350	1,500	11,100	2,000	14,600	700	800	2,000	800	4,300	550	1,050	1,600
40	6,150	28,000	950	250	35,350	2,050	8,900	2,000	12,950	1,450	800	2,000	800	5,050	700	1,050	1,750
50	4,550	17,250	950	250	23,000	2,050	8,200	2,000	12,250	1,300	800	2,000	800	4,900	850	1,050	1,900
1950-51	5,300	5,800	950	250	12,300	2,100	7,750	2,000	11,850	1,250	800	2,000	800	4,850	1,000	1,050	2,050
52	15,150	110,050	950	250	126,400	2,300	35,750	2,000	40,050	2,450	13,350	2,000	800	18,600	1,200	1,050	2,250
53	5,850	14,550	950	250	21,600	2,300	8,400	2,000	12,700	1,650	800	2,000	800	5,250	1,250	1,050	2,300
54	7,300	59,700	950	250	68,200	2,400	14,050	2,000	18,450	1,800	800	2,000	800	5,400	1,250	1,050	2,300
55	7,500	22,700	950	250	31,400	2,450	8,700	2,000	13,150	1,750	800	2,000	800	5,350	1,250	1,050	2,300
1955-56	5,300	20,650	950	250	27,150	2,350	8,300	2,000	12,650	1,500	800	2,000	800	5,100		1,050	2,350
57	5,250	25,350	950	250	31,800	2,000	7,650	2,000	11,650	900	800	2,000	800	4,500		1,050	2,350
58	11,900	155,600	950	250	168,700	2,850	54,700	2,000	59,550	2,050	20,850	2,000	800	25,700		1,050	2,300
59	4,500	22,500	950	250	28,200	2,250	7.350	2,000	11,600	1,050	800	2,000	800	4,650		1,050	2,300
60	4,900	10,200	950	250	16,300	2,500	6,900	2,000	11,400	1,400	800	2,000	800	5,000	1,200	1,050	2,250
1960-61		5,950	950	250	11,850	2,250	6,850	2,000	11,100	1,050	800	2,000	800	4,650	1,150	1,050	2,200
25-year average	8,896	64,430	950	250	74,526	1,896	36,050	2,000	39,946	1,272	22,242	2,000	800	26,314	694	1,050	1,744

Estimated average annual supply to: Harper Basin -- 1,550 acre-feet.

Coyote Basin -- 1,450 acre-feet.

Caves Basin -- 13,350 acre-feet.

▶The amount of precipitation on the basin consumptively used by native vegetation is not included.

Water Use and Disposal

The use and disposal of water during the base period, 1936-37 through 1960-61, are discussed here under the headings of surface outflow, subsurface outflow, exported water, and consumptive use.

The figures shown below for surface outflow, subsurface outflow, and exported water were arrived at by the methods described in the previous section for determining the flows at basin boundaries within the study area.

Surface Outflow

Surface outflow from the study area takes place only at the northeast boundary near Afton. The average annual amount of surface outflow during the base period was estimated to be 9,600 acre-feet.

Amounts of average annual surface outflow from each of the basins within the study area during the 25-year base period are given below.

Basins	Average annual surface outflow in acre-feet
Upper Mojave to Middle Mojave	35,500
Middle Mojave to Lower Mojave	21,450
Lower Mojave to Caves	12,200

There is no surface outflow from the Lucerne Basin.

Subsurface Outflow

There is no subsurface outflow from the study area. The amount of average annual subsurface outflow from basins during the 25-year base period was:

Basins	Average annual subsurface outflow in acre-feet
Upper Mojave to Middle Mojave	2,000
Middle Mojave to Lower Mojave Middle Mojave to Harper	2,000 1,000
Lower Mojave to Caves Lower Mojave to Coyote	1,000

Exported Water

The only export of water is from the Middle Mojave Basin to the Lower Mojave Basin, an estimated average annual amount of 700 acre-feet.

Consumptive Use

Water is consumptively used by vegetation and by man and his associated activities. Water is consumed by vegetation through the transpiration processes and building of plant tissues and by evaporation from the soil, from free water surfaces, and from foliage. Water consumptively used by man and his activities includes water used for agriculture, domestic uses, industrial purposes, and water evaporated by urban and nonvegetative types of land use. Water for consumptive use is obtained from natural sources and from man-made facilities.

Applied water from man-made sources meets the consumptive use requirements not supplied through natural sources and is usually in

excess of the consumptive use requirements. The portion of the applied water that is not consumed replenishes the basin by becoming ground water through deep percolation.

In the following discussion of beneficial and nonbeneficial uses of water in the study area, the land use data was obtained from a comprehensive survey of the Mojave River region, conducted by the Department of Water Resources in 1961. The results of this survey are shown on Plate 5, "Land Use, 1961".

The three kinds of plant growth in the study area are: native vegetation, which covers much of the desert; riparian native vegetation, which grows in and near streams; and agricultural crops. Consumptive use of both precipitation and ground water by agriculture is a beneficial use. In addition, consumptive use of water by man in urban or suburban developments and industry is a beneficial use. Consumption of precipitation by native vegetation and consumption of both precipitation and ground water by riparian native vegetation are nonbeneficial uses.

The studies of beneficial consumptive use include determining the total amount of water used by the various crops and the amounts of water used by the population of the study area and its associated commerce and industry.

Agriculture. Estimates of consumptive use of precipitation and applied water by agriculture during the base period were based on the mean annual unit consumptive use values and acreages of the various types of crops. The unit use values for the Mojave River region are presented in State Water Resources Board Bulletin No. 2, "Water Utilization

and Requirements of California", 1955. These unit use values are derived by the "Blaney-Criddle Method". Briefly, this method uses an empirical consumptive use coefficient, the average monthly temperature, the monthly percent of daylight hours, and the length of growing season to arrive at the unit use values.

In applying these unit use values to the base period, the values were modified to reflect the average monthly temperature in the Upper Mojave Basin as recorded at the climatological station at Victorville, and the temperature in the Middle and Lower Mojave Basins based on temperature data at the station at Barstow. The modified, or average, annual unit consumptive use values of precipitation and applied water for various types of crops are shown in Table 16.

As shown in Table 16, the amount of precipitation consumptively used by crops is equal to the small amount of precipitation that occurs during the nongrowing season. This is based on precipitation observed at stations in Victorville and Barstow. These records confirm that the average annual precipitation during the nongrowing season is too small to permit runoff from the tilled area. This amount of rainfall is also well within the moisture-holding capacity of the soil, where it is retained until the growing season. During the growing season, this water is consumptively used; thus, the moisture-holding capacity of the soil was assumed to be depleted at the beginning of the water year.

A description of the various classifications of crops used in this study is presented in Appendix C. These groupings are similar to those used in State Water Resources Board Bulletin No. 2.

TABLE 16

ESTIMATED AVERAGE SEASONAL UNIT CONSUMPTIVE USE
VALUES FOR AGRICULTURAL CROPS DURING THE BASE PERIOD

In acre-feet per acre

		Unit consumptive use values											
Agricultural crop		Upper	Mojave rne Basi	and	:	: Middle and Lower : Nojave Basin							
	: Precipi- : tation		Ground water	:	Total	:	Precipi- tation	: Ground : : water* :	Total				
Alfalfa	0.5		3.0		3.5		0.4	3-3	3.7				
Pasture	0.5		2.8		3•3		0.4	3.1	3.5				
Truck crops	0.5		1.6		2.1		0.4	1.7	2.1				
Field crops	0.5		1.6		2.1		0.4	1.7	2.1				
Deciduous fruits and muts	0.5		2.3		2.8		0.4	2.5	2.9				
Small grains	0.5		1.0		1.5		0.4	1.2	1.6				
Vineyards	0.5		2.5		3.0		0.4	2.7	3.1				

^{*}Pumped ground water that is applied to crops.

The total acreage and the acreages of the various types of crops in the study area were obtained from federal, state, and county land and water use surveys. These included Department of Water Resources surveys in 1929, 1950, 1957, and 1961, a United States Bureau of Reclamation survey in 1946, and United States Bureau of Census surveys in 1934, 1939, and 1949. County crop reports for the Mojave Desert portion of the San Bernardino County were also available for 15 years of the base period, beginning with 1946.

The data for only two of the surveys -- those conducted by the Department in 1957 and 1961 -- included acreages of all the various crops in each basin. Data from the balance of the surveys are of lesser detail, and crop acreage by basin was partially estimated. Based on the data from these surveys, the total acreage and the acreage of the

various types of crops in each basin during each year of the base period were determined. Total acreage for each was interpolated from a curve of the plotted data that shows the variation of the acreage of agriculture from 1929 through 1961. Acreages of the various types of crops were assumed to follow the percentage distribution of the three distinct periods of agricultural development in the study area, for which data on the types of crops are available. The three distinct periods of agricultural development are from 1936-37 to 1946-47, 1946-47 to 1959-60, and 1959-60 to end of the base period 1960-61. The estimated land use in 1961 in each basin is shown in Table 17.

ESTIMATED LAND USE IN THE BASINS IN 1961 In acres

Nature and class		Mo	jave Basin	•		Lucerne	:	Harper	;	Coyote	:	Caves
of land used	Upper	:	Middle	Lover	;	Basin	:	Basin	:	Basin	:	Basin
TER SERVICE AREA												
Urban and Suburcan			0			ъ		^		0		٥
Residential	5,850		800	1,200		ь		0		٥		Ö
Recreational residential	3,250		0	0		ъ		0				
Commercial	550		100	250		b		0		0		
Industrial	100		0	50		-		0		0		U
Unsegregated urban and						ъ				_		
suburban area	1,850		700	650		•		150		0		50
Subtotal	11,600		1,600	2,100		ъ		150		0		50
Included Nonwater Service Area	29,050		2,550	3,200		ъ		250		0		(
Gross Urban and Suburban Area	40,650		4,150	5,300		ъ		400		0		50
Irrigated Agriculture						950C		300		400		650
Alfalfa	4,050		3,100	1,750		850°		200		+00		,
Pasture	1,300		900	300		800°				0		,
Truck crops	200		0	0				0				
Field crops	400		200	150		0°		0		50		(
Deciduous fruits and muts	50		0	150		0		0		0		(
Small grains	900		1,350	50		300°		0		0		,
Subtotal	6,900		5,550	2,400		1,950 ^c		500		450		650
Fallow	150		50	٥		oc		50		0		
Included Nonwater Service Area	350		300	100		100°C		50		50		5
Gross Irrigated Agriculture	7,400		5,900	2,500		2,050 ^c		600		500		70

a. Described in Appendix C.b. Data not available.c. Estimated.

Estimates of the annual and average annual amounts of consumptive use of precipitation and applied water during the base period for the Upper Mojave, Middle Mojave, Lower Mojave, and Lucerne Basins are presented in Table 18.

TABLE 18

CONSUMPTIVE USE OF WATER BY AGRICULTURE DURING THE BASE PERIOD

In acre-feet

Water	Uppe	er Mojave E	Mesin	Mid	ile Mojave	Basin	Lowe	r Mojave P	esin		Moerne Bas	Ln.
year		: Ground : water*	Total	:Precipi- : tation	: Ground : water*		Precipi- tation	: Ground : water	Total	:Precipi - : tation	: Ground :	
1936-37	1,950	9,300	11,250	750	5,200	5,950	150	1,050	1,200	150	900	1,050
38	1,950	9,250	11,200	750	5,200	5,950	150	1,050	1,200	150	900	1,050
39	1,950	9.250	11,200	750	5,150	5,900	150	1,050	1,200	150	900	1,050
10	2,000	9,450	11,450	750	5,300	6,050	150	1,100	1,250	150	900	1,050
1940-41	2,050	9,750	11,800	800	5,450	6,250	150	1,100	1,250	150	900	1,050
42	2,150	10,100	12,250	800	5,600	6,400	150	1,150	1,300	150	900	1,050
43	2,200	10,400	12,600	850	5,800	6,650	150	1,200	1,350	150	900	1,050
44	2,300	10,750	13,050	850	6,000	6,850	150	1,250	1,400	150	900	1.050
45	2,400	11,300	13,700	900	6,300	7,200	500	1,300	1,500	150	900	1,050
1945-46	2,500	11,850	14,350	950	6,600	7,550	200	1,350	1,550	150	900	1,050
47	2,800	14,200	17,000	1,150	8,400	9,550	350	2,700	3,050	350	1,800	2,150
48	3,050	15,550	18,600	1,350	9,950	11,300	550	4.100	4,650	550	2.700	3,250
49	3,300	16,750	20,050	1,550	11,500	13,050	750	5,450	6,200	700	3,600	1,300
50	3,550	18,150	21,700	1,750	12,900	14,650	900	6,900	7,800	850	4,500	5,350
1950-51	3,800	19,450	23,250	1,950	14,450	16,400	1,100	8,200	9,300	1,000	5,400	6,400
52	4,050	20,750	24,800	1,950	14,300	16.250	1,250	9,600	10,850	1,200	6,300	7,500
53	3,950	20,150	24,100	1,950	14,300	16,250	1,200	9,200	10,400	1,250	6,550	7,800
54	3,800	19.500	23,300	1,900	14,150	16,050	1,100	8,300	9,400	1,250	6,600	7,850
55	3,700	19,850	23,550	1,900	14,150	16,050	950	7,350	8,300	1,250	6,750	8,000
	3,100	1,,0,0	23,770	1,500	14,170	20,000	9,00	1,300	0,300	1,2,0	0,1,0	0,000
1955-56	3,600	19,350	22,950	1,900	14,000	15,900	850	6.450	7.300	1,300	6,800	8,100
5 7	3.550	18,850	22,400	1,850	13.750	15,600	700	5.450	6,150	1,300	6,900	8,200
58	3,500	18,750	22,250	1,950	14,450	16,400	750	5,600	6,350	1,250	6,750	8,000
59	3,500	18,750	22,250	2,050	15,100	17,150	800	6,100	6,900	1,250	6,550	7,800
66	3,500	18,200	21,700	2,150	14,300	16,450	900	6,650	7,550	1,200	6,300	7,500
1960-61	3,500	18,200	21,700	2,200	14,950	17,150	950	7,200	8,150	1,150	6,150	7,300
25-year												
average	5,981	15,114	18,098	1,428	10,290	11,718	588	4,434	5,022	694	3,706	4,400
Estimated	(1961 14	and use con	ditions):	Preci	pitation	Ground wat	er	Total				
			er Basin		200		_					
						1,600		00 acre-fe				
		Cave	te Basin		200	1,400	1,6	OO acre-fe	et			

Urban-Suburban and Industry. In the study area, because of the lack of historic urban and suburban land use surveys and the minor amounts of heavy industry in the basins, it was appropriate to estimate

urban-suburban water use on the basis of a per capita use of water and

population data.

The population of the study area is concentrated in the four major basins. Estimates of population in these basins from 1930 through 1960 are presented in Table 19 and are based on federal census surveys of 1950 and 1960, supplemented by information from earlier state reports. Detailed estimates of the population of the other three basins, Harper, Caves, and Coyote, are not available; however, they are sparsely settled areas and constitute approximately 2 percent of the total study area population.

TABLE 19
ESTIMATED POPULATION
1930 TO 1960

	·	Population										
Year	:	Mojave Basi	in	: Lucerne	Total							
	Upper	: Middle	Lower	Basin	<u>:</u>							
1930	2,650	2,300	1,100	150	6,200							
<u>4</u> 0	3,250	1,550	3,800	200	8,800							
50	8,400	4,100	9,750	450	22,700							
60	25,000	8,100	18,300	1,600	53,000							

The amount of applied, or delivered, water that is consumptively used by the population in the study area was determined from data in Department of Water Resources Bulletin No. 78, "Investigation of Alternative Aqueduct Systems to Serve Southern California", Appendix D, "Economic Demand for Imported Water", 1960. Based on information in the report, the average per capita applied water in the study area was estimated to have increased from about 130 gallons per capita per day at the start of the base period (1936-37) to 200 gallons per capita per day at the end (1960-61). The information in the report was also the basis for the assumption that 50 percent of the applied water is consumptively used.

The annual and average annual amounts of consumptive use of water during the base period by urban and suburban areas in the Upper Mojave, Middle Mojave, Lower Mojave, and Lucerne Basins are presented in Table 20.

Industrial use of water in the study area is by a railway maintenance yard, a steam power generating plant, and three cement plants.

TABLE 20

CONSUMPTIVE USE OF WATER BY URBAN AND SUBURBAN AREAS DURING THE BASE PERIOD

In acre-feet

		Mojave River		: Lucerne
Water year	Upper	Middle	Lower	Basin
1936-37	200	100	250	
38	200	100	250	44 150
	250	100	250	
3 9 40	250	100	300	50 ^a
1940-41	300	150	350	
42	350	150	400	
43	400	200	450	
44	450	200	500	
45	500	250	550	100 ^b
1945-46	550	250	650	
47	600	300	700	~ -
48	650	300	750	
49	700	350	850	
50	800	400	900	200p
1950-51	850	400	950	50
52	950	450	1,050	50
53	1,050	450	1,100	50
54	1,150	500	1,150	50
55	1,250	500	1,200	100
1955-56	1,400	550	1,200	100
57	1,500	550	1,250	100
58	1,850	600	1,500	100
59	2,300	750	1,750	1 50
60	2,750	900	2,000	200
1960-61	2,950	900	2,050	200
25-year		. 01		ž.
average	968	384	894	₃

a. Four-year total.

b. Five-year total.

Water consumption by these industries was computed from records of metered pumping of wells and records of the amounts used in the industrial process. Where these records were not complete, additional data on water purchases and plant production (computed in terms of use of water per product) were also used for estimating the water consumption. Table 21 shows the amounts of consumptive use of water by industry.

Nonbeneficial Consumptive Use

Throughout most of the undeveloped portions of the study area, the consumptive use of water by native vegetation is assumed equal to the precipitation. However, vegetation along the banks of the Mojave River derives only a small part of its water supply from precipitation, but consumes large quantities of ground water that might be beneficially used by man if the vegetation were eliminated and controlled. Estimates of nonbeneficial consumptive use of water by this riparian native vegetation were based on the "Blaney-Criddle Method" applied to the acreages of the four classifications of riparian native vegetation considered in this study. These classifications are based on the Department's 1961 land use survey modified by field correlation. The classifications provide a direct means of determining an individual consumptive use value for each type of riparian native vegetation, as shown in Table 22.

As shown in Table 23, the acreages of riparian native vegetation were classified according to areal (surface) density and kind of plants, taking into account the areas of high ground water and minor areas of free water surfaces. The amounts in each basin were determined from aerial photos of the Mojave River area taken in 1929, 1939, and 1959.

TABLE 21

CONSUMPTIVE USE OF WATER BY INDUSTRY
DURING THE BASE PERIOD

In acre-feet

Water Year	: Upper : Mojave Basin	: Lower : Mojave Basin	: Lucerne : Basin
1936-37	250	200	0
38	200	200	0
39	200	200	0
ήο	200	200	0
1940-41	300	200	0
42	350	200	0
745 743 745	250	200	0
لمليا	250	200	0
45	250	200	0
1945-46	350	200	0
47	350	200	0
47 48	350	200	0
49	35 0	200	0
50	450	200	0
1950-51	500	200	0
	550	200	0
52 53 54 55	550	200	0
54	650	200	0
55	1,250	200	0
1955-56	1,450	200	0
57	1,500	200	250
57 58 59	1,450	200	400
59	1,450	200	400
60	1,300	200	450
1960-61	1,400	700	500
25-year			
average	646	220	80

The 1929 photos were used for coverage along the river from the forks to the Lower Narrows near Victorville where 1939 photos were not available. The 1959 survey was considered to approximate conditions in 1961, the end of the base period for this study.

TABLE 22

AVERAGE ANNUAL UNIT CONSUMPTIVE USE VALUE OF RIPARIAN NATIVE VEGATATION

In acre-feet per acre

	Unit consumptive use value											
Classification of riparian	Up	per	Mojave 1	Basir	. Middle and Lower Mojave Basin							
native vegetation	Precipi-	:	Ground water	:	Total	_; _;	Precipi- tation	:	Ground water	:	Total	
Trees, 80 percent areal density or greater	0.4		4.7		5.1		0.3		5.1		5.4	
Trees, 79 percent areal density or less	0.4		4.2		4.6		0.3		4.6		4.9	
Brush and meadowland	0.4		2.9		3.3		0.3		3.2		3.5	
Swamp	0.4		6.8		7.2		0.3		7.3		7.6	

Table 23 shows the classifications of riparian native vegetation and the acreages of each in the Upper, Middle, and Lower Mojave
Basins in 1960-61.

TABLE 23

AREAS DEVOTED TO
RIPARIAN NATIVE VEGETATION IN 1960-61

In acres

Classification of		Mojave Basin							
riparian native vegetation	Upper	Middle	Lower						
Trees, 80 percent areal density or greater	1,790	170	1,010						
Trees, 79 percent areal density or less Brush and meadowland	1,350 1,320 600	1,110 70 0	680 180 0						

Utilizing the Blaney-Criddle method and the estimated acreage and assigned consumptive use coefficient for each classification of riparian native vegetation, the unit water use values and the amounts of consumptive use were determined for each year of the base period.

The annual and average annual amounts of consumptive use of precipitation and ground water by riparian native vegetation in the Upper, Middle, and Lower Mojave Basins during the base period, is shown on Table 24.

Estimated amounts of water use and disposal during the base period are presented in Table 25 for each of the main basins: Upper Mojave, Middle Mojave, Lower Mojave, and Lucerne. Estimates for the other three basins -- Harper, Coyote, and Caves -- are also indicated by footnote.

Tn	acre	-fe	-1
111	a.c.r.e	- L C	•

Water	Upper Mojave Basin						Mid	dle Mojave	Basi	n.	Lower Mojave Basin				
year	:	Precipita-	-;	Ground water	:	Total	: Precipita- : tion :	Ground water	:	Total	: Precipita- : tion :	Ground water	Ī	Total	
	•									^					
1936-37		3,100		20,450		23,550	500	7,300		7,800	750	11,250		12,000	
38		2,900		20,850		23,750	600	7,300		7,900	800	11,200		12,000	
39		2,500		21,500		24,000	750	7,200		7,950	1,100	10,900		12,000	
40		2,000		22,200		24,200	600	7,400		8,000	800	11,200		12,000	
1940-41		4,750		19,650		24,400	1,200	6,850		8,050	1,700	10,300		12,000	
42		1,950		22,650		24,600	850	7,250		8,100	1,250	10,750		12,000	
43		3,850		20,950		24,800	650	7,500		8,150	950	11,050		12,000	
44		4,000		19,700		23,700	500	7,550		8,050	700	11,050		11,750	
45		2,950		21,800		24,750	800	7,650		8,450	1,100	11,100		12,200	
1945-46		1,750		23,350		25,100	200	8,550		8,750	250	12,300		12,550	
47		2,050		23,100		25,150	100	8,500		8,600	150	12,100		12,25	
48		1,750		22,600		24,350	150	8,050		8,200	150	11,500		11,65	
49		2,850		21,500		24,350	500	7,400		7,900	700	10,450		11,15	
50		1,000		24,100		25,100	300	7,850		8,150	400	11,250		11,650	
1950-51		1,500		23,950		25,450	150	8,000		8,150	150	11,450		11,600	
52		3,650		20,750		24,400	350	7,400		7,750	1,200	9,850		11,05	
53		1,900		22,600		24,500	350	7,300		7,650	450	10,500		10,95	
54		2,050		22,750		24,800	500	7,150		7,650	700	10,300		11,00	
55		3,800		20,250		24,050	550	6,750		7,300	800	9,700		10,50	
1955-56		1,700		22,750		24,450	450	6,800		7,250	650	9,800		10,45	
57		1,700		23,200		24,900	150	7,000		7,150	200	10,100		10,30	
58		3,000		21,250		24,250	900	6,100		7,000	1,300	8,800		10,10	
59		1,000		23,950		24,950	200	6,850		7,050	250	9,950		10,20	
60		1,400		23,500		24,900	350	6,550		6,900	500	9,450		9,95	
1960-61		1,200		23,150		24,350	50	6,700		6,750	100	9,600		9,70	
25-year average		2,412		22,100		24,512	468	7,318		7,786	684	10,636		11,32	

Estimated (1961 land use conditions):

Caves Basin

Precipitation

Ground water 1,150 Total

TABLE 25 ESTIMATED WATER USE AND DISPOSAL DURING THE BASE PERIOD

In	acre-i	eet
----	--------	-----

***	:	Upper Mo	jave Basin		•	Midd	Le Mojave	Basin			Lower Mo;	ave Basin		Lucerne Basin			
Water year	Surface outflow	: Bubsur- : face : outflow	Consump-	: : Total :	Surface outflow	: Subsur- : face : outflow	Exported water	Consump- tive use	Total		: Subsur- : face : outflow	Consump- tive use	Total		Consump-	Total	
1936-37	125,200	2,000	35,250	162,450	103,900	3,000	800	13,850	121,550	54,950	2,000	13,650	70,600	300	1 050		
38	159,150	2,000	35,350	196,500	138,100	3,000	800	13,950	155,850	109,050	2,000			100	1,050	1,150	
39	17,250	2,000	35,650	54,900	599	3,000	800	13,950	18,300	1,050			124,700	100	1,050	1,150	
40	15,350	2,000	36,100	53,450	7,0	3,000	800	14,150	17,950	1,050	2,000 2,000	13,650	16,700	100	1,050	1,150	
	.,		3-7	75, 70	•	3,000	555	14,170	11,970	1,000	2,000	13,750	16,800	100	1,100	1,200	
1940-41	118,950	2,000	36,800	157,750	96,000	3,000	800	14,450	114,250	50,550	2 000	12 800	66 am	100			
42	13,700	2,000	37,550	53,250	100	3,000	800	14,650	18,550	1,050	2,000	13,800	66,350	100	1,050	1,150	
43	104,700	2,000	38,050	144,750	91,000	3,000	800	15,000	109,800		2,000	13,900	16,950	100	1,050	1,150	
1111	60,300	2,000	37,450	99,750	36,250	3,000	800			48,050	2,000	14,000	64,050	100	1,050	1,150	
45	39,500	2,000	39,200	80,700	22,100		800	15,100	55,150	8,800	2,000	13,850	24,650	100	1,050	1,150	
",	39,000	2,000	37,200		22,100	3,000	800	15,900	41,800	5,650	2,000	14,450	22,100	100	1,150	1,850	
1945-46	29,350	2,000	40,350	71,700	12,550	3,000	800	16,550	32,900	3,600	2 000	14 050	~~ ~~~	***			
47	17,150	2,000	43,100	62,250	2,900	3,000	800	18,450	25,150		2,000	14,950	20,550	100	1,050	1,150	
48	10,550	5,000	43,950	56,500	2,500		800			1,950	2,000	16,200	20,150	100	2,150	2,250	
49	8,350	2,000	45,450	55,800	-	3,000		19,800	23,600	1,050	2,000	17,250	20,300	100	3,250	3,350	
50					0	3,000	800	21,300	25,100	1,050	2,000	18,400	21,450	100	4,300	4,400	
90	7,650	2,000	48,050	57,700	0	3,000	800	23,200	27,000	1,050	2,000	20,550	23,600	100	5,550	5,650	
1950-51	7,200	2,000	50,050	59,250	0	3,000	800	24,950	28,750	1,050	2,000	22,050	06 300	300	Chen		
52	35,200	2,000	50,700	87,900	12,550	3,000	800	24,450	40,800	3,600			25,100	100	6,450	6,550	
53	7,850	2,000	50,200	60,050	0	3,000	800	24,350			2,000	23,150	28,750	100	\$, 550	1, 650	
54	13,500	2,000	49,900	65,400	ŏ		800		28,150	1,000	2,000	22,650	25,650	100	7,850	7,950	
55	8,150	2,000			_	3,000		24,200	28,000	950	2,000	21,750	24,700	100	7,900	8,000	
,,	0,100	2,000	50,100	60,250	0	3,000	800	23,850	27,650	900	2,000	20,200	23,100	100	8,100	8,200	
1955-56	7,750	2,000	50,250	60,000	0	3,000	800	23,700	27,500	900	2,000	19.150	22,050	100	8,200	9 200	
57	7,100	2,000	50,300	59,400	0	3,000	800	23,300	27,100	750	2,000	17,900		100		8,300	
58	54,150	2,000	49,800	105,950	20,050	3,000	800	24,000	47,850	4,900	2,000		20,650		8,550	8,650	
59	6,800	2,000	50,950	59,750	0	3,000	800	24,950		600		18,150	25,050	100	8,500	8,600	
60	6,350	2,000	50,650	59,000	ŏ	3,000	800		28,750		2,000	19,050	21,650	100	8,350	8,450	
-	0,500	2,000	70,070	79,000	U	3,000	000	24,250	28,050	700	2,000	19,700	22,400	100	8,150	8,250	
1960-61	6,300	2,000	50,400	58,700	0	3,000	800	24,800	28,600	650	2,000	20,600	23,250	100	8,000	8,100	
25-year	35 500		il on	00													
average	35,500	2,000	44,224	81,724	21,442	3,000	800	19,884	45,126	12,196	2,000	17,456	31,652	100	4,840	4.640	

a. Estimated average annual outflow.

Estimated total use and disposal:

Harper Basin
Coyote Basin
Caves Basin
Caves Basin
Caves Basin
1,600 acre-feet -- 1961 land use conditions.
13,150 acre-feet (3,550 acre-feet -- 1961 land use conditions and
9,600 acre-feet, estimated average annual surface outflow at Afton)

Water Supply Surplus or Deficiency

A balance must exist between the sum of water entering and leaving the water-bearing portion of the study area and change in storage within that portion. A quantitative statement of this balance for any increment of time is provided by the equation of hydrologic equilibrium which, expressed in its general form, is:

Inflow-Outflow = 1 Change in Storage.

In this report, the water-bearing area, from the base of the alluvium to and including the ground surface, is considered as the free body, as shown in Figure 6, and the equation of hydrologic equilibrium is expressed as:

Water Supply - Water Use and Disposal = Water Supply Surplus or Deficiency.

Based on the water year as the increment of time, the annual water supply surplus or deficiency for each year of the 25-year base period was determined, using this equation.

In each of the four main basins, Upper Mojave, Middle Mojave, Lower Mojave, and Lucerne Basins, the total water supply during the base period was less than the total water use and disposal. In each basin, this resulted in a water supply deficiency which was met by using ground water in storage.

The amount of annual water supply, annual water use and disposal, and the resulting annual and accumulated deficiency during the base period for each basin is presented in Table 26. The accumulated deficiencies -- 179,950 acre-feet, 129,500 acre-feet, 133,450 acre-feet, and 72,400 acre-feet for the Upper Mojave, Middle Mojave, Lower Mojave, and Lucerne Basins -- represent the reduction in ground water in storage during the base period in each of these basins. The total water supply, use and disposal, and deficiency is shown in the following tabulation:

	In acre-feet									
Basin		Water Supply	:	Water Use and Disposal	::	Deficiency				
Upper Mojave Basin Middle Mojave Basin Lower Mojave Basin Lucerne Basin		1,863,150 998,650 657,850 43,600		2,043,100 1,128,150 791,300 116,000		179,950 129,500 133,450 72,400				
Totals		3,563,250		4,078,550		515,300				

Due to lack of complete data, it is not possible to compute comparable water supply, use and disposal amounts for the other three basins -- Harper, Coyote, and Caves. However, it is apparent from the limited information available that a water deficiency also existed in these basins during the base period, and that future development of these areas will require supplemental water.

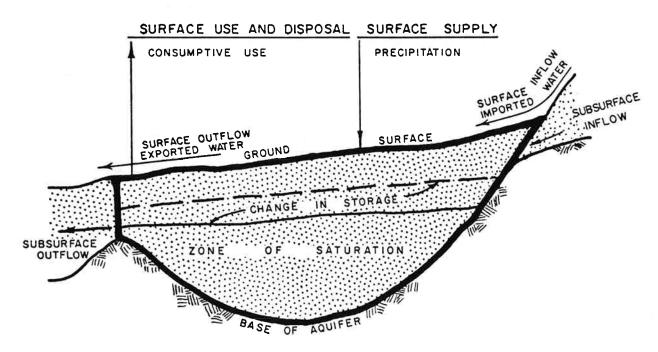


Fig. 6. THE GROUND WATER BASIN AS A FREE BODY

TABLE 26

ESTIMATED WATER SUPPLY, USE AND DISPOSAL, AND WATER SUPPLY SURPLUS
OR DEFICIENCY DURING THE BASE PERIOD

In acre-feet

		Upper Moja	ve Basin			Middle Mo;	ave Basin			Lower Moje	ave Basin		Lucerne Basin			
Water :	Water	Water	Surplu		Water	Water		us or	Water	Water	Surplu defic		Water	Water		us or iency
year :	supply	use and disposal		Accumu-		use and disposal	Annual	:Accumu-	supply	use and disposal	Annual	Accumi-	supply	disposal	Annual	: Accumu- : lated
	. 0	262.150	00 000	00 950	300.000	121,550	7,450	7,450	108,400	70,600	37,800	37,800	1,200	1,150	50	50
1936-37	183,300	162,450	20,850	20,850 56,450	129,000 163,050	155,850	7,200	14,650	142,650	124,700	17,950	55,750	1,200	1,150	50	100
38	232,100	196,500	35,600	50,100	21,300	18,300	3,000	17,650	5,400	16,700	-11,300	44,450	1,200	1,150	50	150
39 40	48,550 38,250	54,900 53,450	- 6,350 -15,200	34,900	19,250	17,950	1,300	18,950	4,550	16,800	-12,250	32,200	1,200	1,200		150
40	30,270	73,170	-2/,200	3.,,,,	->,->	-	•	_				(= ===		3 350	50	200
1940-41	203,600	157,750	45,850	80,750	123,500	114,250	9,250	28,200	101,450	66,350	35,100	67,300	1,200	1,150	50	250
42	,33,250	53,250	-20,000	60,750	17,900	18,550	- 650	27,550	5,100	16,950	-11,850	55,450	1,200	1,150	50	
43	167,100	144,750	22,350	83,100	108,750	109,800	- 1,050	26,500	95,700	64,050	31,650	87,100	1,200	1,150	50	300
14.14	128,250	99,750	28,500	111,600	64,200	55,150	9,050	35,550	40,700	24,650	16,050	103,150	1,200	1,150	50	350
45	81,000	80,700	300	111,900	43,750	41,800	1,950	37,500	27,000	22,100	4,900	108,050	1,200	1,250	- 50	300
					22.050	20,000	150	37,650	16,600	20,550	- 3,950	104,100	1,200	1,150	50	350
1945-46	62,150	71,700	- 9,550	102,350	33,050	32,900	- 4,200	33,450	7,000	20,150	-13,150	90,950	1,400	2,250	- 850	- 500
47	59,000	62,250	- 3,250	99,100	20,950	25,150			4,300	20,300	-16,000	74,950	1,600	3,350	-1,750	- 2,250
48	24,350	56,500	-32,150	66,950	14,600	23,600	- 9,000	24,450		21,450	-16,400	58,550	1,750	4,400	-2,650	- 4,900
49	35,350	55,800	-20,450	46,500	12,950	25,100	-12,150	12,300	5,050 4,900	23,600	-18,700	39,850	1,900	5,650	-3,750	- 8,650
50	23,000	57,700	-34,700	11,800	12,250	27,000	-14,750	- 2,450	4,900	23,000	-10,700	35,000	1,500	,,0,0	-31174	,.,.
1950-51	12,300	59,250	-46,950	- 35,150	11,850	28,750	-16,900	- 19,350	4,850	25,100	-20,250	19,600	2,050	6,550	-4,500	-13,150
	126,400		38,500	3,350	40,050	40,800	- 750	- 20,100	18,600	28,750	-10,150	9,450	2,250	7,650	-5,400	-18,550
52	21,600		-38,450	- 35,100	12,700	28,150	-15,450		5,250	25,650	-20,400	- 10,950	2,300	7,950	-5,650	-24,200
53			2,800	- 32,300	18,450	28,000	9,550		5,400	24,700	-19,300	30,250	2,300	8,000	-5,700	-29,900
54 55	68,200 31,400		-28,850	- 61,150	13,150	27,650	-14,500	- 59,600	5,350	23,100	-17,750	- 48,000	2,300	8,200	-5,900	-35,800
- //	J 2 ,	0-,-,-	•	•	-						16 000	Cl. 050	0.360	8,300	-5,950	-41,750
1955-56	27,150	60,000	-32,850	- 94,000	12,650	27,500	-14,850		5,100	22,050	-16,950	- 64,950	2,350	8,650	-6,300	-48,050
57	31,800	59,400	-27,600	-121,600	11,650	27,100	-15,450		4,500	20,650	-16,150	- 81,100	2,350	8,600	-6,300	-54,350
58	168,700		62,750	- 58,850	59,550	47,850	11,700		25,700	25,050	650	- 80,450	2,300		-6,150	-60,500
59	28,200		-31,550	= 90,400	11,600		-17,150		4,650	21,650	-17,000	- 97,450	2,300	8,450	-6,000	-66,500
66	16,300		-42,700	-133,100	11,400	28,050	-16,650	-112,000	5,000	22,400	-17,400	-114,850	2,250	8,250	-0,000	~00,700
1960-61	11,850	58,700	-46,850	-179,950	11,100	28,600	-17,500	-129,500	4,650	23,250	-18,600	-133,450	2,200	8,100	-5,900	-72,400
25-year average	74,526	81,724			39,946	45,126			26,314	31,652			1,744	4,640		

CHAPTER IV. WATER QUALITY

Surface and ground waters contain dissolved minerals that vary in amount and composition. Surface water character is primarily dependent upon mineral composition of rocks within the upper source areas of a stream. As the stream proceeds to lower levels, the basic water character continues to be influenced by mineral characteristics of materials through which it flows and by secondary contributions of other water types from tributaries and rising ground water.

Concentrations of mineral constituents in ground water are influenced primarily by the quality and quantity of water which percolates to the ground water basin. The sources of this replenishment by percolation include surface flow, precipitation, sewage and industrial waste waters, and irrigation waters. Ground water quality is also influenced by the lithologic type and relative age of water-bearing materials; the hydrologic and geologic conditions that govern rates of ground water movement; well construction and destruction techniques; the season of the year; changes in water level elevations; and duration and rate of pumping prior to sampling of the ground water.

Regional and local correlation of the quality of extracted ground water is, therefore, dependent on the knowledge of geology, hydrology, well drilling practices, duration, and rates of ground water extractions and drawdowns, and water use. Such information is vital to the identification and comprehension of factors that produce water of dissimilar qualities from closely spaced wells, or water of similar quality from wells in widely separated regions within the study area.

In the vast and remote Mojave region, however, collection of adequate data is a major problem. Wells are scarce—in some areas, non-existent. There are few records of well construction or water production rates; for this reason, interpretation of conditions which produce waters of varying qualitites in the area can only be based on approximations.

From such records as are available, it is apparent that there is a wide variation in the mineral character and quality of ground water within the individual basins of the Mojave study area. The existence of marked differences of water quality in certain basins necessitated the grouping of individual water types into broader more general categories to facilitate description and discussion. This procedure resulted in the identification of some relatively consistent and distinct ground water quality characteristics within each basin. Moreover, these characteristics made it possible to identify those basin areas that were influenced by flows from the Mojave River and to locate restrictions to ground water movement.

As a general guide on the acceptability and use of various water supplies in the Mojave River region, water quality criteria are presented in Appendix D.

Sampling and Analyses

A regular water quality monitoring program in the area of investigation has been conducted by the Department since 1952 in cooperation with the San Bernardino County Flood Control District. Additional samples were taken during this investigation to confirm previous data. Samples

TABLE 27 MINERAL ANALYSES OF REPRESENTATIVE SURFACE WATERS

	Heath	Canyon-	:							Mojave	River							
Constituent	tribu	tary to p Creek T3N/R7W	101	Fork iflow) r3N/R4W	:0	Forks T3N/R3W	Victor Sec.29	ville TGM/R4W	Helen Sec. 31	dale T6n/R4W	: Bars : (floo :Sec.31	tow dflow) TlON/RlW	Barst Sec. 31 T	ow :H	arvard ng (flo ec.34 T	10N/R3E	Sec. 18	Canyon Tlln/R6E
	epmª/	ppm_b/	: epm	DDm	: QUM	ppm	: epps	DDM	: enga	ppm	: epm	ppm	epm	ppm:	epm	ppm	: epm	ppm
	0.27	1.7	1.00	20	1.05	21	2.15	43	2.30	46	1.24	25	1.63	33	2.19	44	1.20	24
Ca	2.37 0.47	47 6.0	0.41	5	0.33	4	0.75	9	0.74	9	0.44	5	0.34	4	0.77	9	0.30	4
lg	0.15	3.0	0.39	ģ	1.22	28	1.83	42	2.39	55	0.64	15	2.93	68	4.26	98	12.65	291
la.	0.15	6.4	0.08	3	0.05	2	0.08	3	0.118	4.6	0.046	1.9	0.25	9.6	0.02	0.8	0.26	10.2
~ 0	0	0	o	0	0	0	0	0	0.32	10	0	0	0	0	0	0	0.80	24
²⁰⁰ 3	1.45	88	1.19	73	1.69	103	3.18	194	3.24	198	1.30	79	3.48	212	4.59	280	6.60	403
H003	-		0.17	6	0.37	-	0.79	28	0.87	31	0.28	10	0.73	26	1.30	46	4.65	165
C1	0	0 81	0.32	15	0.55		0.83		1.02	49	0.70	33.6	0.94	45	1.42	68	2.55	122
90 ₄			_	-			0.05		0.029	1.8	0.03	1,63	0.04	1.54	0.032	2.0	0.09	5.6
^{NO} 3	0	0	0.13	8	0.02	1	0.0)	3	0.029	1,0			•.•		-		-	
r Boron Biliga	0.02	0.4 0 4.0	0.02	0.4 0.07	0.09	1.8	0.03	0.6	0.041	0.78 0.14		0.20 26	0.021	0.40 0.40 5		0.16	0.04	0.8 1.1 64
TDSC/ by Evaporation	2	62	1	32		171		283		310	1;	39	2	93		455 		916
Percent Na Total hardness Sampled byd Data sampled Discharge (cfs) Temperature pH EC x 10	3/2 4:	48 42 MR 88/63 3 7.5 7.5	14/2 1 146°	21 71 MR 2/65 35 F. 7.2	2/	46 68 DWR 5/65 18 9 F. 7.6 272	2/ 51	38 145 DWR 5/65 31 8.0 476	S 2	43 153 BCFCD /4/64 8.1 493	15/ 50/	27 84 WR 4/58 00 F. 7.6	8/2	57 99 WR 8/58 40 7.1	8: 3	59 148 BOPCD /27/58 7.6 700	10	88 75 DWR 0/25/61 1.5 57° F. 8.5

<sup>a. Chemical equivalents per million.
b. Parts per million by weight.
c. Total dissolved solids.
d. SBCFCD-San Bernardino County Flood Control District; DMR-Department of Water Resources</sup>

were also drawn from wells in areas not previously covered by the monitoring program. Another major source of water quality data was information compiled by the United States Geological Survey, and published by the Department of Water Resources in the Bulletin 91 series. In addition, useful information was obtained from the Department's Bulletin No. 106-1, "Ground Water, Occurrence and Quality, Lahontan Region", June 1964.

Representative analyses of surface water within the individual basins are presented in Table 27. Ground water analyses are presented in Table 28.

Mineral Character and Quality of Surface and Ground Water

The mineral character and quality of water in the study area depends upon the geologic composition of the study area, the movement and occurrence of surface and ground waters, and the use of these waters. Surface and ground waters exhibit several distinct types of mineral character and ranges of total dissolved solids.

Surface Water

Available mineral analyses depicting surface water character and quality within the study area are primarily confined to the flows of the Mojave River, the main source of water supply to the region. Average of all data shows that storm flow of the Mojave River is primarily calcium bicarbonate in character and has less than

TABLE 28 MINERAL ANALYSES OF REPRESENTATIVE GROUND WATERS FROM WELLS

	:		Lucer	ne Basi	n	:		Upp	er Mojav	e Basin				Mid	dle Moj	ave Basi	n	
Constituent	: Lucerr	h of le Lake W-1P	Lucerne 5N/1V	Valley	: Nes :Fifteenmil : 4N/2W-	e Valley:	Apple	Valley	Apple 5N/3W	Valley -33R1	Ade	ar lanto W-9Bl	Stoddard 7N/1W		: Hele	ear ndale W-30El	Hinkley 10N/3	r Valley N-23H4
			: epon	ppm	epm :		epm	: ppm	; epm :	ppm :	epm	: ppm	epm :	ppm	: epm	: ppm	: epm :	ppm
Ca Mg Na	3.52 4.82 2.05	70 59 47	2.77 1.22 27.43	55 15 631	2.40 1.34 1.87	48 16 43	6.14 1.00 8.44	123 12 194	2.54 1.24 2.83	51 15 65	0.41 0.18 5.00	8.2 2.2 115	1.59 0.59 1.95	32 7.2 45	4.20 0.52 10.43	84 6.3 240	5.20	13 0.7 120
K	0.06	2.3	0.10	4.0	0.06	2.5	0.14	5.4	0.06	2.4	0.02	0.8	0.05	1.9	0.09	3.5 0	0.03	1.3
со ₃ нсо ₃ so ₄ с1	0 2.50 4.73 3.01	0 152 227 106	0 3.20 11.60 16.00	0 195 557 567	0 2.36 1.87 1.16	0 144 90 41	0.66 13.93 1.18	0 40 668 42	0 2.35 2.82 1.32	0 143 135 47	0 2.83 2.36 0.19	0 173 113 6.8	0 2.28 0.86 0.77	0 139 41 27	2.81 4.85 7.57	172 233 269	4.50 0.71 0.70	274 34 25
NO 3	0.39	24 0.2	0.16 0.20	10 4.0	0.06 0.13	3.8 2.4	0.02	1.2 3.3	0.06 0. 0 4	3.6 0.8	0.02	1.3	0.12	7.3 1.2	0.01	0.5 0.4		1.6
F Boron Siliça	0.01	0.2 0.0 18		1.2 32	0.13	0.09 31	0.21	1.90 30	• • • • • • • • • • • • • • • • • • • •	0.46 23		0.27 15	,	0.20 24)	0.5 24	2	1.62 25
TDS2/ by Evaporation	7	32	1,	934	3	05	1	,105	l _k ;	12	3	42	25	52	9	924	3	46
Percent Na Total hareness Sampled by Date sampled	14 D 8/2	20 17 WR 3/63 F.		87 200 DWR 17/63	1. D	33 87 wr 3/63	6	54 357 DWR /14/63	1 D	42 89 WR 8/ 63	I	89 30 WR 10/64	10 D	47 09 4R 7/64	1/3	69 236 DWR 22/64 • F.	1/8	88 36 MR 3/64 F.
Temperature pH EC x 10 ⁶		7.6 90	3,	7.6 000	5	7.8 57	1	8.1 ,529	6	7.9 50	5	7.9 550	1 ₄	8.0 00	1,	7.6 460	5	8.2 70

<sup>a. Chemical equivalents per million.
b. Parts per million by weight.
c. Total dissolved solids.
d. DWR-Department of Water Resources.</sup>

MINERAL ANALYSES OF REPRESENTATIVE GROUND WATERS FROM WELLS (continued)

	:		Harp	er Basin			:	L	ower Moje	ave Basin			•	e Basin		Basin
Constituent		h of r Lake W-33Gl	: Harp	west of er Lake 3E-28K1	: Loci	ear chart W-30N2	: Ye	st of ermo LE-33Pl	Too	ear omey 2E-25Pl	: Tro	th of by Lake /4E-7El	Coyo	ear te Lake 2E-32Gl	. Har	ar vard E-14J1
	: epma/	: ppmb/	: epm	: ppm	: epm	: ppm	: epm	: ppm	: epm	: ppm	: epm	: ppm	; epm	ppm	; epm	: ppm
Ca Mg Na K	1.30 0.20 10.70 0.12	26 2 246 5	1.70 0.60 8.75 0.13	34 7 201 5	3.49 0.83 15.60 0.20	70 10 359 8	1.75 0.43 2.97 0.06	35 5 68 2	1.13 0.80 3.17 0.03	23 10 73 1	0.49 0.53 5.35 0.11	9.9 6.4 123 4.4	1.88 0.46 10.65 0.06	38 5.6 245 2.5	2.62 0.68 3.60 0.03	52 9 83 1
CO ₃ HCO ₃ SO ₁ , C1	0 2.45 3.74 6.00 0.18	0 211 180 213 11	0 1.15 6.89 3.00 0.09	0 70 331 106 5.6	0 3.36 5.60 10.69 0.06	0 205 269 379 4	0 2.48 1.19 1.41 0.02	0 151 57 50 1	0.32 2.92 0.97 0.90 0	10 178 46 32 0	0.40 3.15 1.19 1.35 0.01	12 192 57 48 0.7	0 1.86 5.47 5.73	0 11 ¹ 4 262 203 0	0 2.44 1.57 2.71 0.03	0 148 75 96 2
F Boron Siliça	0.043	0.8 0.32 60	0.060	1.1 1.73 24		1.8	0.03	0.5 1.4	0.01	0.29	0.10	1.90 1.0	0.10	2.0 0.82 28	0.03	0.6 0.46
TDS <u>c</u> / by Evaporation	8	04	7	63	1	,221	3	301		296		426		848	1	ю2
Percent Na Total hardness Sampled byd Date sampled Temperature	D	87 75 WR 5/61 F.	1 D		1	78 216 DWR 4/7/65	1	57 109 DWR /6/65		62 96 DWR 24/64		82.6 51 SBCFCD 4'22/64	4/	82 117 DWR 29/64 F.	6/2	52 165 DWR 24/64
PH EC x 10 ⁶	1,3	7.7 15	1,2	8.0 05	2	7.7 ,076	:	8.0 5 33	1	8.5 475		8.3 61.35	1,	8.0 220	(7.9 570

<sup>a. Chemical equivalents per million.
b. Parts per million by weight.
c. Total dissolved solids
d. DWR-Department of Water Resources; SECFCD-San Bernardino County Flood Control District.</sup>

400 parts per million (ppm) total dissolved solids (TDS) before it percolates into the ground water basins of the region. Mineral analyses of samples of ground water rising to the stream channel at Victorville indicate that the rising water is higher in TDS, about 300 ppm, and has a larger percent of sodium than its source of replenishment, the storm flow of the Mojave River. At Afton, where rising water maintains a perennial stream, the water character is primarily sodium bicarbonate-chloride and is significantly poorer in quality than the rising water at Victorville. At Afton, the total dissolved solids were about 900 ppm in 1962.

Ground Water

The classification of ground water quality is based upon water samples obtained from pumped wells. For study purposes, the quality of ground water in the study area was grouped into four broad, general water types. The first type is generally relatively low in total dissolved solids, with calcium, sodium, or a combination of the two being the major dissolved cation, and bicarbonate the major dissolved anion constituent. A second general type contains a relatively high total dissolved solids content that is either sodium, calcium sulfate, or sodium or calcium sulfate-chloride in character. A third distinct type is high in total dissolved solids and is either sodium chloride or sodium-calcium chloride in character. A fourth general type has a relatively high total dissolved solid content and consists of a mixture of bicarbonate-sulfate water or bicarbonate-chloride water with either sodium, calcium, or a combination of both as the predominant cation.

For illustrative purposes, and for more detail, 13 distinct ground water types have been identified and are shown on Plate 6, "Water Quality Conditions". These are the results of selective data reduction and condensation of the wide range of water type variations which are present in the study area. Each of these 13 types, however, falls into at least one of the four broad categories previously outlined, which are discussed in detail in the following paragraphs:

Bicarbonate Ground Water. Ground water within the area influenced by surface waters of the Mojave River is predominantly bicarbonate in character, with the dominant cations being either sodium, calcium, or a mixture of sodium and calcium. The bicarbonate characteristic of the ground water is believed to be derived from runoff from the bordering granitic rocks that occur in the San Bernardino Mountains to the south. Ion exchange within the area influenced by percolating stream waters is indicated by the change from a predominantly calcium bicarbonate character in the Upper Mojave Basin to a predominantly sodium bicarbonate character downstream in the Middle and Lower Mojave Basins. This ion exchange phenomena is believed to occur between water and clay within the water-bearing materials.

A magnesium bicarbonate type water occurs in the southern portion of Lucerne Basin adjacent to the Helendale fault. The magnesium cation is derived principally from dolomitic limestone outcrops that occur in the mountains to the south and from dolomitic limestone detritus that is contained in the sediments.

Mineral analyses indicate that for the study area as a whole, the average total dissolved solids (TDS) content of the bicarbonate type ground water is approximately 300 parts per million (ppm), although the range of TDS is from 90 to 2,000 ppm. Fluoride concentrations

found in bicarbonate type ground water throughout the study area are commonly less than 1 ppm; however, a few isolated wells at scattered locations in the Middle Mojave Basin have revealed fluoride concentrations up to 4.0 ppm. Mineral analyses also indicate that the boron content in the area as a whole is commonly less than 1 ppm; however, excessive boron concentrations have been recorded in a few isolated wells, predominately in areas where wells have penetrated older sediments. This penetration allows a mixing between poorer quality water from the older sediments and better quality water from the younger sediments.

Sulfate and Sulfate-Chloride Ground Water. In areas where there is a predominance of older alluvium (particularly older alluvium whose source rocks include the Tertiary sedimentary deposits) or where portions of the ground water basin receive very little recharge and have only a slight amount of ground water movement, ground water typically has a sulfate or sulfate-chloride anion content. The dominant cation is usually sodium, although calcium occurs occasionally as the dominant cation constituent. In addition, where the ground water basins are intersected by or closely related to faults, ground water is dominantly sodium-calcium sulfate in character and usually has a relatively high total dissolved solids concentration. Total dissolved solids content in the area's sulfate or sulfate-chloride type water ranges from 200 to more than 3,000 parts per million (ppm), although it is typically 700 to 1,000 ppm.

Mineral analysis of ground water extracted from one well in the extreme southwest portion of Harper Basin, in a structural wedge southwest of the Lockhart fault and northeast of the Helendale fault, revealed a TDS concentration of nearly 15,000 ppm and a water character of sodium

sulfate-chloride. This concentration and water type, together with the proximity to the Helendale fault and the evidence of very little recharge and ground water movement in the immediate area, lend credence to the assumption that ground water in this particular locale is connate water and has probably been virtually static since entrapment. However, this condition could also result from meteoric water that has been concentrated by evaporation. Phenomenon of this sort presumably exists in other areas within the basins; however, the lack of adequate well data renders it impossible to determine the extent and frequency of the condition.

Analyses also indicate that the concentration of fluoride in the sulfate or sulfate-chloride type ground water ranges from less than 1 part per million to almost 4.0 ppm; the average fluoride content ranges between 1 and 2 ppm. Boron concentrations are typically between 1 and 2 ppm in Upper Mojave and Lucerne Basins; however, the downstream basins contain water that has a boron content that is commonly greater than 2 ppm. In one particular area in Harper Basin, it ranges from 0 up to 35 ppm.

Sodium Chloride Ground Water. The third general ground water type present in the area of investigation contains sodium as the dominant cation and chloride as the dominant anion. Calcium occasionally occurs with sodium in nearly equal concentrations; however, predominance of this condition is limited to the Lower Mojave Basin in an area directly northwest of Troy Dry Lake. Examples of modifications in water type resulting from significant amounts of the sulfate ion are also found in the study area. Such modifications are rare and are prevalent in only one small area of Lucerne Basin.

Sodium chloride type ground water occurs consistently in the study area, being typically present in the fine-grained playa deposits found at lower elevations of the basins and in the older lake deposits. The total dissolved solids content ranges from 380 ppm to more than 5,300 ppm; the average is approximately 1,200 ppm.

Fluoride and boron concentrations are commonly between 1 and 2 ppm. However, in the Middle Mojave Basin, fluoride content frequently ranges from 4 to 8 ppm; boron, from 4.9 to 10 ppm. In the Harper Basin these ranges are: fluoride, 0.5 to 1.6 ppm; and boron, 0.32 to 8.7 ppm.

Ground Water of More Than One Type. Ground water, in which two or more of the four major water types are present, is pumped in some isolated places in the study area. This condition, which has also been observed during investigations of other regions, indicates that ground water quality types may be related to the formations in which they occur, rather than to areal distribution. In the Mojave region, for example, where older alluvium is overlain by channel deposits of the Mojave River, a well penetrating both of these formations would yield a combination of bicarbonate water from the channel deposits and sulfate water from the underlying alluvium. This appears to be one explanation for the combinations of water types that are pumped in some areas.

Total dissolved solids concentrations of these combined water types tend to be moderately high, in the 600 to 900 ppm range, while the fluoride and boron content varies from 0 to 1 ppm from basin to basin. There are very few instances where fluoride and boron reach a high level of concentration in these waters. In the Barstow-Daggett area, however, well log data indicate that some water wells penetrate volcanic material, which is known to contribute significant amounts of boron and increased mineral content to the water.

Changes in Ground Water Character and Quality. It is difficult to trace any distinct trend in ground water character and quality because of the lack of historical data in the major portion of the study area. In general, available data indicate that the character and quality of water in and adjacent to the downstream reaches of the Mojave River have declined. At Afton, the total dissolved solids content has increased from about 650 ppm in 1950 to about 900 ppm in 1962. The mineral character of ground water has also changed in various areas of the basins. In some of these areas, domestic and agricultural uses have increased the total dissolved solids content by 300 to 1,000 ppm. Along the Mojave River, ground water impairment may be attributed to waste waters derived from man's agricultural, urban and suburban, and industrial activities. The natural recycling of these "used" waters to and from the ground water basin reservoir, slowly but continually increases the total dissolved solids concentration, thereby decreasing the water quality. The change in ground water characteristics may also reflect types of water encountered in the various water-bearing formations as the ground water levels throughout the basins declined.

In addition, the sources of water supply are continually adding salts to the basins that far exceed the amounts removed by water disposal. A limited study of the amount of salts added to the water-bearing portion of the study area shows that water supply contributed an average of 21,000 tons of salts during the base period, 1936-37 through 1960-61, and that water disposal by surface outflow removed an average of 3,000 tons of salts. With man's activities in the basins

contributing an additional average of 4,000 tons of salt during the base period, an adverse salt balance, or accumulation of salts, at the rate of 22,000 tons per year exists in the basin.

At present, there are only scattered areas in the basin where water quality is a problem because of the undesirable character and high TDS of the water. A more comprehensive study may be needed in the future to provide specific information on the water quality conditions in the Mojave River area.

CHAPTER V. GROUND WATER STORAGE, OVERDRAFT, AND SAFE YIELD

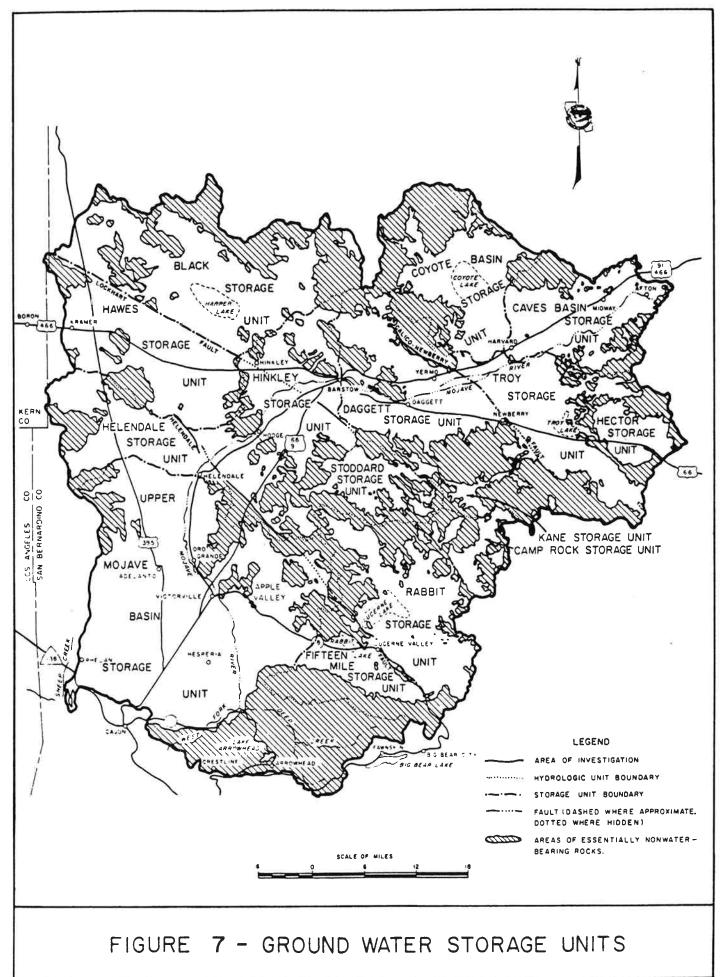
The ground water basins, or water-bearing portions, of the study area contain millions of acre-feet of storage space. These provide for natural regulation of the water supply, use, and disposal. During periods of heavy precipitation, when there is a surplus of water supply, water levels rise and ground water in storage increases. However, in dry periods, the deficiency in water supply is met by extraction and use of ground water, which in time lowers water levels and decreases the amount of ground water in storage.

Ground Hater Storage

many times greater than the average annual water supply to the basin.

These natural reservoirs are the primary water resource in the study area. Most of the wells that pump ground water are located along the river and in adjacent valleys where, historically, there has been a readily available supply of ground water. Generally, as the distance from the river increases, the depth at which ground water occurs also increases. Thus, although there are vast amounts of ground water in storage, only limited use has been made of this water resource.

For studies on ground water storage, some of the ground water basins were subdivided into smaller units, on the basis that geologic faults and alluvial constrictions limit the movement of ground water from one portion of the basin to another. These limited areas of the basins are referred to as storage units. These storage units were used in


computing the ground water storage capacity and the change in storage for each basin discussed here. The storage units are shown on Figure 7.

Storage Capacity

For the basins in the study area, the storage capacity is defined as the amount of storage space between the ground surface and the 1961 water levels. The ground water in storage is considered to be the amount contained in the zone between the 1961 water levels and the base of the water-bearing materials. Plate 7, "Ground Water Level Contours, 1961", shows the ground water levels at the end of the base period. The most recent water levels for this study are shown on Plate 8, "Ground Water Level Contours, Spring 1964".

Although the base of the water-bearing materials in the study area was not well known, estimates were made, based primarily on well logs that extend to the nonwater-bearing materials, and on gravity surveys conducted by the United States Geological Survey. Materials were considered to be water-bearing if they produced a minimum yield of 50 gallons per minute. This limit was assumed to provide a reasonable estimate of the base of the water-bearing materials, which lie at great depths and are generally considered to be too consolidated to yield water readily. Estimates of the elevation of the base of the water-bearing materials are shown on Plate 4.

The total thickness of the water-bearing materials from the ground surface to the base of these materials ranges from a foot at its contact with nonwater-bearing crystalline rock to over 1,000 feet near Phelan, with an average total thickness of about 300 feet for the

alluviated portion of the study area. Overall, the average saturated thickness, based on the 1961 water levels, is approximately 230 feet. For the portion of the basins that receive surface and/or subsurface inflow from the Mojave River, the average saturated thickness, based on the 1961 water levels, is approximately 275 feet, in an average total thickness of 360 feet. In general, as the distance from the river increases the average saturated thickness becomes smaller in proportion to the total thickness of the water-bearing materials.

To estimate the volume of water stored in the interstices within the water-bearing sediments, the volume of sediments is multiplied by its specific yield value. The specific yield of water-bearing materials is defined as the ratio of the volume of water that saturated materials will yield by gravity drainage over a period of time to the total volume of the saturated materials, prior to draining; it is usually expressed as a percent. Specific yield values of these materials, as described in water well driller's logs, were determined in a cooperative study by the Department and the United States Geologic Survey. Specific yield values and representative driller's terms are presented in Appendix E. These values range from 3 to 35 percent.

The average specific yield from the ground surface to the base of the water-bearing materials varies according to the lithologic composition of the materials, resulting in a wide range (4 to 25 percent) and wide distribution of the average specific yield values in the study area. In those portions of the basins in which surface and/or subsurface inflow from the Mojave River constitutes the most important source of ground water supply, the average specific yield was found to be 14 percent.

The average specific yield for the other areas was estimated to be about 10 percent.

The storage capacity of each basin and storage unit is shown in Table 29. As presented in the table, total storage capacity consists of available storage space and the ground water in storage, in relation to the 1961 water levels.

TABLE 29

ESTIMATED GROUND WATER STORAGE CAPACITY, AVAILABLE STORAGE, AND GROUND WATER IN STORAGE

	In acre-	feet			
Total storag	ge capacity :				
	26,532,000		8,212,000		18,320,000
		170			
5,649,000 1,792,000 607,000	8,048,000	1,907,000 936,000 174,000	3,017,000	3,742,000 856,000 433,000	5,031,000
3,919,000 4,035,000 643,000 105,000	8,702,000	1,465,000 973,000 575,000 53,000	3,066,000	2,454,000 3,062,000 68,000 52,000	5,636,000
1,307,000 2,861,000		1,463,000		1,398,000 240,000	
700,000	4,736,000		2,583,000		2,153,000
	48,018,000		16,878,000		31,140,000
3.791.000					
3,184,000	6,975,000		::#		
	7,530,000		15 4		
	4,152,000				
	5,649,000 1,792,000 607,000 3,919,000 4,035,000 643,000 105,000 1,307,000 2,861,000 568,000	70tal storage capacity : 26,532,000 5,649,000 1,792,000 607,000 8,048,000 3,919,000 4,035,000 643,000 105,000 8,702,000 1,307,000 2,861,000 2,861,000 48,018,000 3,791,000 3,184,000 6,975,000 7,530,000	Total storage capacity : Available at above 1961 vs 26,532,000 5,649,000 1,907,000 936,000 1792,000 936,000 174,000 3,919,000 1,465,000 973,000 973,000 973,000 973,000 973,000 973,000 105,000 973,000	Total storage capacity : Available storage space, : above 1961 water levels : 26,532,000 8,212,000 5,649,000 1,907,000 936,000 174,000 8,048,000 174,000 3,017,000 3,919,000 1,465,000 973,000 575,000 575,000 575,000 575,000 575,000 53,000 3,066,000 1,307,000 1,463,000 3,066,000 1,307,000 1,463,000 328,000 2,583,000 48,018,000 16,878,000 3,791,000 3,184,000 16,878,000	Total storage capacity : Available storage space, showe 1961 water levels : below 1961 water lev

Data not available.

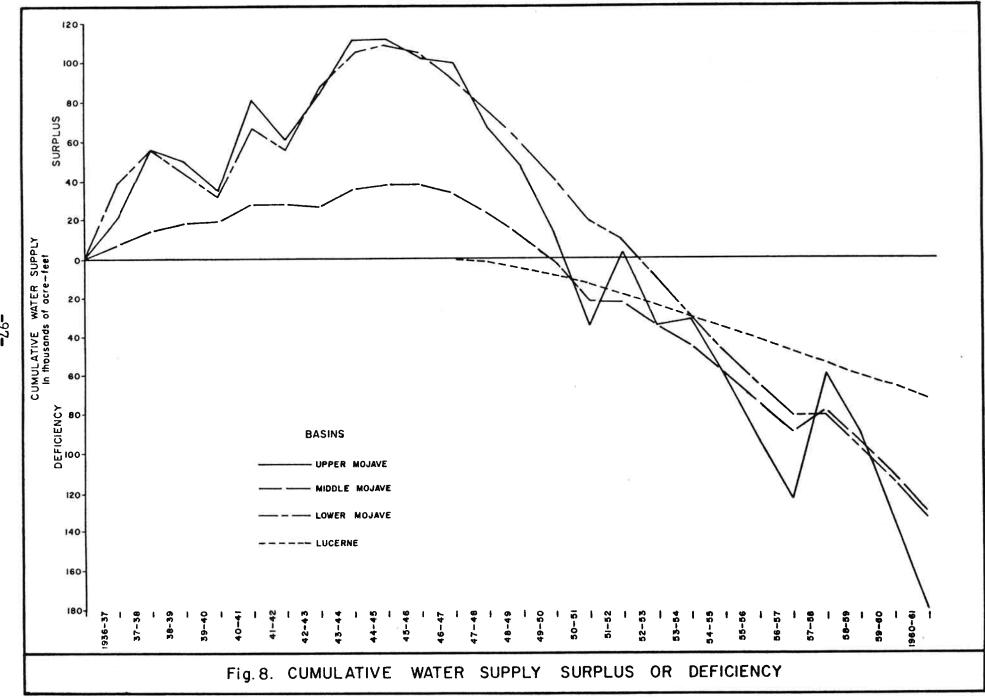
Change in Storage

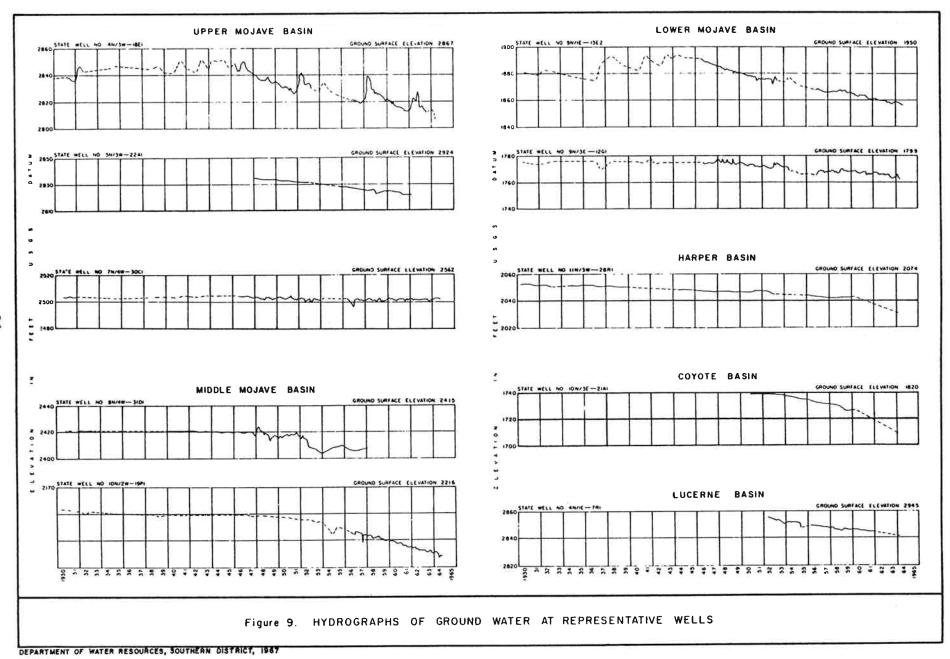
Change in the amount of ground water in storage over a specified period is reflected by the change in ground water levels. One method to compute changes in storage is by use of the equation of hydrologic equilibrium (Inflow-Outflow = $^{\pm}$ change in storage). Storage changes during the base period using this method are shown in Table 26 as water supply

surplus or deficiency.

The change in storage during the base period was also determined by use of the Specific Yield Method:

(Specific yield value) x (thickness of saturated water-bearing materials) x (area) = ground water in storage.


The results of this computation substantiate the results obtained by the use of the hydrologic equation. The amounts of surplus and deficiency computed by the Specific Yield Method are shown in Table 30.


TABLE 30
ESTIMATED CHARGE IN AMOUNTS OF GROUND WATER IN
STORAGE DURING THE BASE PERIOD

In acre-feet

Basin	Ground water in storage									
	Below 1936	water levels	Below 1961	vater levels	Change in	25-years				
Jpper Mojave		18,506,000		18,320,000		-186,000				
Middle Mojave										
Helendale storage unit Hinkley storage unit Stoddard storage unit	3,772,000 952,000 433,000	5,157,000	3,742,000 856,000 433,000	5,031,000	30,000 96,000 0	-126,000				
Lower Mojave										
Daggett storage unit Troy storage unit Hector storage unit Kane storage unit	2,522,000 3,124,000 68,000 52,000	5,766,000	2,454,000 3,062,000 68,000 52,000	5,636,000	68,000 62,000 0	-130,000				
ucerne						-				
Fifteen Mile storage unit Rabbit storage unit Camp Rock storage unit	516,000 1,477,000 240,000	2,233,000	515,000 1,398,000 240,000	2,153,000	1,000 79,000 0	- 80,000				

When the annual amounts of water supply surplus or deficiency from Table 26 are accumulated and plotted, as shown on Figure 8, "Cumulative Water Supply Surplus or Deficiency", the general trend corresponds to the hydrographs of the wells numbers 4N/3W-18E1, 10N/2W-19P1, and 9N/1E-13E2 shown on Figure 9, "Hydrographs of Ground Water at Representative Wells". These wells are in areas where substantial changes in storage have occurred. Figure 9 also shows hydrographs of wells in outlying areas, where a smaller reduction in storage occurred during the base period.

Comparison of the two figures shows that, in general, water levels in the study area increased from 1936-37 to about 1945, but decreased from 1945 to 1961, the end of the study base period. This trend has continued to 1966. The distribution and amounts of pumping in the basins in 1961 is shown in Table 31.

TABLE 31
PUMPAGE OF GROUND WATER IN 1961*

Tn	acre-	feet.
111	acre-	.T GG 0

Basin	: Pumpage	
Upper Mojave San Bernardino Mountains to Upper Narrows Upper to Lower Narrows Lower Narrows to Helendale	33,737 4,291 14,173	52,201
Middle Mojave Helendale to Hodge Hodge to Barstow	9,111 17,264	26,375
Lower Mojave Barstow to Daggett Daggett to Calico-Newberry fault East of Calico-Newberry fault	4,698 9,208 5,963	19,869
Lucerne Southwest of Helendale fault Northeast of Helendale fault TOTAL	667 9,876	10,543 108,988
Estimated: Harper Coyote Caves	1 5,601 2,861	

*The amounts of pumpage were estimated from State Water Rights Board's records. However, currently a detailed verification of pumpage is being made by the Mojave Water Agency. Preliminary figures from this determination indicate the pumpage within the area served by the Agency in 1961 to be on the order to 180,000 acre-feet.

Because, after use, a substantial portion of water extracted from wells returns by deep percolation to the zone of saturation, amounts pumped from wells should not be construed as reduction in ground water sotrage.

Plate 9 depicts the amounts of change in water levels in wells in the study area during the base period, 1936-37 to 1960-61.

Ground Water Overdraft and Safe Yield

In this report, the value assigned to ground water overdraft is equal to the mean annual decrease in the amount of ground water in storage over a longtime period, under a particular set of physical conditions affecting the supply, use, and disposal of water. — The value assigned to ground water safe yield is equal to the mean annual amount of ground water that can be pumped from the ground water basin, under the same specific physical conditions, without causing a longtime net change in the amount of ground water in storage.

As was pointed out earlier, the water supply and climatic conditions during the 25-year base period were considered to be equivalent to those conditions during the longtime period.

The set of physical conditions used in the determination of overdraft and safe yield were those that existed in the study area in 1960-61, the last year of the base period. These physical conditions were assumed fixed throughout the base period. In other words, this assumption established the annual amount of water supply, use, and disposal to sustain the 1960-61 physical conditions under mean water supply and climate the entire base period; it also established the places and ways in which the fixed amounts of water supply were applied, used, and disposed.

^{1/}See Chapter III for specific items on water supply, use, and disposal.

Ground water overdraft was computed to be the average annual water supply deficiency under actual conditions plus the difference between the average annual consumptive use during the base period and the mean annual consumptive use under 1960-61 physical conditions.

This is true because the mean annual amounts of water supply, use, and disposal were found to be the same as the average amounts of the corresponding hydrologic items, except the amount of consumptive use which increased significantly.

The values of ground water basin overdraft for each of the four major basins are derived in Table 32.

TABLE 32

ESTIMATED ANNUAL OVERDRAFT UNDER
1960-61 LAND USE CONDITIONS AND PUMPAGE

In	acre-feet	per	year
----	-----------	-----	------

	:Average annual	.: Cor	sumptive Us	e	:
Basin	water supplydeficiencyunder actualconditions	:Average an- :nual under : actual :conditions	: Mean annua : under : 1960-61 :conditions	Thomasa	: Ground : water :overdraft
Upper Mojave	7,200	44,200	50,400	6,200	13,400
Middle Mojave	5,200	19,900	24,800	4,900	10,100
Lower Mojave	5,350	17,450	20,600	3,150	8,500
Lucerne	2,900	4,550	8,000	3,450	6,350
Totals	20,650	86,100	103,800	17,700	38,350

Estimates of annual safe yield were obtained by subtracting the estimates of annual overdraft from estimates of the annual amounts of ground water pumpage that would have been necessary to sustain the

1960-61 physical conditions under mean water supply and climate over a longtime period. Values of safe yield for the four major basins are presented in Table 33.

TABLE 33

ESTIMATED MEAN ANNUAL SAFE YIELD

UNDER 1960-61 LAND USE CONDITIONS AND PUMPAGE*

In	acre-feet	per	year
----	-----------	-----	------

	:Estimated annual: : pumpage under :	Groun	d water
Basin	1960-61 : conditions :	Overdraft	Safe yield
Upper Mojave	57,000	13,400	43,600
Middle Mojave	32,000	10,100	21,900
Lower Mojave	22,000	8,500	13,500
Lucerne	12,000	6,350	5,650
Totals	123,000	38,350	84,650

^{*}The amounts of pumpage were estimated from State Water Rights Board's records. However, currently a detailed verification of pumpage is being made by the Mojave Water Agency. Preliminary figures from this determination indicate the pumpage within the area served by the Agency in 1961 to be on the order of 180,000 acre-feet. Using this figure, the estimated mean annual safe yield would be on the order of 140,000 acre-feet.

It should be pointed out again that two basic assumptions were made in the determination of overdraft and safe yield in this study:

(1) a particular set of physical conditions affecting the supply, use, and disposal (including pumpage) of water in the ground water basin was assumed, and (2) it was further assumed that these conditions remained constant at the 1960-61 level throughout the 25-year base period. These assumptions then fixed the amounts of the items of supply, use, and disposal of water at one level for the entire base period; they also held constant the place and manner in which the fixed amount of water supply

was applied, used, and disposed. These assumptions were hypothetical, of course, since this situation did not occur in the past and will probably not occur in the future.

In the management of ground water basins in the Mojave area, an understanding of these assumptions and the manner in which they are used is necessary, if the estimates of safe yield and overdraft obtained by this method are to be used as guides in controlling the amounts of pumpage from the ground water basins and in estimating the needs for imports to the area. For example, should it be deemed necessary to reduce the amounts of pumpage by the amount of the overdraft in order to achieve safe yield, the amount of such reduction would have to be made up by an equal amount of supplemental water, such as water obtained by removal of riparian native vegetation or by importing water. This supplemental water would have to be applied in the same place and manner as the extracted water for which it is being substituted, if the estimates of safe yield of the basin determined under constant conditions are to remain unchanged.

ent for different sets of physical conditions. Sufficient changes could be made to eliminate overdraft and maintain safe yield. Man has control over, and could change, such physical conditions as (a) urban, suburban, industrial, agricultural land use; (b) intensity of native vegetation, especially riparian native vegetation; and (c) water conservation featues such as reclamation of waste water and artificial recharge of water. In turn, these will change the amounts of water supply, use, and disposal.

An example by which the amount of annual overdraft could be reduced and the annual amount of safe yield could be increased significantly

would be by economically removing and controlling the amount of riparian native vegetation. Assuming that the set of physical conditions previously used would have been the same, except that 50 percent of the riparian native vegetational use would have been removed, the annual amount of overdraft would have decreased from about 38,000 acre-feet to 19,000 acre-feet and the annual amount of safe yield would have correspondingly increased from 79,000 acre-feet to 98,000 acre-feet.

There are major flood control and water supply features under way that could affect the physical conditions of the basin. The U. S. Army Corps of Engineers is currently designing the federally authorized flood control dam at the fork site, at the confluence of Deep Creek and the West Fork of the Mojave River. Also, the U. S. Bureau of Reclamation has investigated a multiple-purpose dam and reservoir project at the same site. Principally, it would reduce peak floodflows, decreasing the amount of surface outflow from the study area. In turn, the annual overdraft would decrease and the annual safe yield would increase.

The amounts of ground water overdraft and safe yield are dependent upon the set physical conditions used in their determination, one of which is pumpage. Accordingly, the amounts of ground water overdraft and safe yield are subject to redetermination whenever major changes occur in these conditions. Such a reevaluation may be necessary periodically in the future to provide a continuing guide to the use of ground water in storage.

CHAPTER VI. FUTURE SUPPLEMENTAL WATER REQUIREMENTS AND SOURCES

The San Bernardino Mountains separate the Mojave River desert region from the coastal metropolitan area of Southern California but the region is affected by the social and economic trends of the coastal area. The future expansion in the developed coastal area will tend to spill over into the inland Mojave desert and should have a profound effect on the economy of the study area.

Although the major portion is undeveloped, the study area is strategically located in relation to the great Southern California market with its center in Los Angeles. It is traversed by major transcontinental rail and highway routes, and a dependable supply of electricity and natural gas. Land is available at much lower prices than in coastal Southern California and in its present relatively undeveloped state, the study area could easily accommodate additional agricultural, urban and suburban, and industrial development.

The development of the study area will be limited by the local, social and economic factors affecting agriculture, urban and suburban areas, and industry. Agriculture is influenced by the economic feasibility of producing particular crops under certain market conditions, the availability of land, the pressure for land for other developments, and the availability of low-cost water. In general, farming is marginal and is affected by the late spring and early fall frosts which, in contrast to other more productive and desirable areas, limit production of most crops to the summer months when market prices are lowest. The number of crops that can be produced annually is also limited. In addition, any significant

increase in the cost of water would make it uneconomical for the farmer to continue. Therefore, assuming that future agricultural water costs will remain close to the current levels and that the cost of imported water to the Mojave Water Agency would be recovered by increased urban and suburban water rates and by ad valorem taxation, the total gross agricultural acreage is expected to decrease only slightly -- to 16,800 acres in 1970, 15,600 acres in 1980, and 14,500 acres in 1990.

The present urban-suburban areas will continue to be the center for most of the future social and economic activity. Under the influence of the current trend toward development of recreational and retirement areas in the desert regions and the closely associated growth in commercial activity to support these areas, the population of the Mojave region is expected to increase. However, the magnitude of growth will probably not be as great as the growth anticipated in other regions of Southern California.

Population projections to the year 1990 are given in the Department's Dulletin 119-12, "Feasibility of Serving the Mojave Water Agency from the State Water Project", printed in December 1965. This bulletin updates the population figures given in Bulletin 78, "Investigation of Alternative Aqueduct Systems to Serve Southern California", Appendix D, "Economic Demand for Imported Water", published in March 1960.

The current estimates of future population of the Mojave Water Agency (which is essentially the population of the study area) are: 90,000 in 1970, 211,000 in 1980, and 393,000 in 1990. The per capita population demand is estimated to increase from the 200 gallons per capita per day in 1960-61 to 213 gpcd in 1970, 222 gpcd in 1930, and 228 gpcd in 1990.

Industrial activity is not expected to increase in the same proportions as the population. Although the area has the potential for industrial development, the initial investment required to install utilities and other services may deter industries from locating in the area. Furthermore, the study area will be competing with other areas of Southern California for industry. However, the growth of cement production can be expected to continue. The basic raw materials are in abundant supply and the demand will continue to grow and be stimulated by the projected growth of California, generally, and Southern California, specifically. Cement production, however, is not a labor-intensive industry and it has become increasingly mechanized in recent years. For this reason, the expected further expansion of the capacity of the present plants and the probable construction of new plants will not necessarily lead to a proportionate increase in employment within the industry and in demand for water. On this basis, industrial use of water was assumed to increase from 2,600 acre-feet in 1960-61 to 5,000 acre-feet in 1970.

Amounts of water use and disposal, water supply, and water deficiency under 1960-61 land use conditions, and projected amounts for the years 1970, 1980, and 1990 are presented in Table 34.

The water deficiency of 1960-61 and earlier years was met by use of ground water in storage. However, the anticipated growth of the area will result in increased need for supplemental water in future years. To meet these needs, the Mojave Water Agency has contracted with the State of California Department of Water Resources for importation of Northern California water through the State Water Project. These deliveries are to begin in 1972.

TABLE 34
WATER REQUIREMENTS AND SOURCES OF SUPPLY
(Total Study Area)

In acre-feet

Study area	1960-61	1970	1980	1990
Water Use and Disposal: Surface Outflow ^a	9,600	9,600	9,600	9,600
Consumptive use Agriculture Riparian Native Vegetation ^b Urban and Suburban Industry	60,100 41,950 6,200 2,600	51,000 41,950 11,000 3,000	48,000 41,950 26,000 4,000	44,000 41,950 50,000 5,000
TOTAL	120,450	115,550	129,550	150,550
Existing Sources of Water Supply Precipitation Surface inflow Subsurface inflow Imported water	7: 12,750 68,000 850 250	12,750 68,000 850 250	12,750 68,000 850 250	12,750 68,000 850 250
TOTAL	81,850	81,850	81,850	81,850
Water Supply Deficiency	38,600	34,700	47,700	68,700
Supplemental Sources of Water Supply: State Water Project Annual Entitlement			27,200	50,300
Water Deficiency ^d	38,600	34,700	20,500	17,900

a. May be reduced if a proposed dam is constructed at the Forks site.

Consideration was also given to the possibility of additional inflow occurring in future years as the result of importation of water into the mountain area by the Crestlire-Lake Arrowhead Mater Agency, which

b. Water salvage could result from a program of elimination and control of riparian native vegetation.

c. Delivery scheduled to begin in 1972 with importation of 8,400 acre-feet.

d. To be met by use of ground water. Amount could be reduced under conditions a and b above.

has contracted for 5,800 acre-feet of water annually from the State Water Project. Deliveries are scheduled to begin in 1972.

The Crestline-Lake Arrowhead region is primarily a recreation and resort area. Small streams, springs, and shallow wells are the current scurces of water. Currently, about 30 percent of the total area within the water agency service area is severed and this treated sewage is disposed of through evaporation ponds. The remaining portion of the sewage is disposed of through individual septic tank cesspool systems.

About 85 percent of the consumptive use of water by man occurs during the summer months, when consumptive use of water by vegetation and evaporation is also highest. Assuming that the current rate of development continues and that present weather cycles also continue, the amount of imported water supply from the State Water Project will be sufficient only to meet the future additional water demands; there will be no increase in inflow to the study area due to the application of imported water in the mountain area.

As shown in Table 34, a significant possible source of supplemental water is water salvaged as a result of a program of elimination and control of riparian native vegetation. Based on the limited amount of available information, the approximate cost of such a program would be about \$50 per acre for clearing, plus about \$10 per acre for control by spraying or burning. These amounts include the direct cost of equipment, operating expenses, and salaries and wages.

Because these areas are along the river, where free water surface and high ground water conditions may exist, it may be necessary to collect and distribute the recovered water to other areas to prevent loss

by evaporation. If collection and distribution facilities are included in the program, there would be additional cost. Management costs should also be included in determining the total cost of a program to eliminate and control areas of riparian native vegetation to provide a source of supplemental water.

In meeting the future water demands by identifying the above mentioned sources of supplemental water supplies, consideration could be given to a planned reduction of ground water in storage since approximately 30,000,000 acre-feet of ground water exists within the basins and the average annual deficiency is in the order of 38,000 acre-feet.

CHAPTER VII. SUMMARY OF FINDINGS AND CONCLUDING STATEMENTS

In this chapter, the results of the geologic, hydrologic, and water quality studies are summarized as findings. The concluding statements evaluate the objectives achieved and indicate the further application of the findings.

Summary of Findings

Geology

The area of investigation is irregularly shaped, covers about 3,700 square miles, and contains about 2,500 square miles of water-bearing area. It is essentially an alluviated plain made up of small, broad valleys, separated by hills, groups of hills, and low mountains.

Structurally, the study area is dissected by three major northwest-southeast trending faults, which have an important influence on ground water flow: the Helendale, Lockhart, and Calico-Newberry faults. These faults exhibit very little surface expression, primarily because of burial by alluvium. Ground water levels are higher on the southwest side of each of these faults than on the northeast side. Water level differences range from a few feet to about 60 feet.

The water-bearing portion of the study area comprises seven ground water basins: Upper, Middle, and Lower Mojave Basins, and Harper, Coyote, Caves, and Lucerne

Basins. All except Lucerne Basin receive the major portion of their water supply from the Mojave River. The major source of water supply to the Lucerne Basin is from surface inflow from the mountain area.

The heterogeneous, water-bearing alluvial deposits that constitute the ground water basins are primarily the result of stream erosion of the adjacent highlands. These alluvial deposits average about 300 feet in thickness, within a range of a few feet to over 1,000 feet. The saturated portion of these deposits, over the entire study area, averages about 230 feet in depth. However, in those portions of the area that receive inflow from the Mojave River, the average saturated thickness is 275 feet, in an average total thickness of 360 feet.

The specific yield of the water-bearing alluvial deposits varies throughout the basins. The average specific yield for areas influenced by inflow from the Mojave River is approximately 14 percent. For the entire water-bearing portion of the study area, the specific yield ranges from 3 to 25 percent; for the other areas, the average is 10 percent.

Hydrology

Historical Conditions.

The amounts of annual water supply, water use and disposal, and water supply deficiency during the 25-year base period

(1936-37 through 1960-61) were determined for the Upper, Middle, and Lower Mojave Basins, and Lucerne Basin, where adequate geologic and hydrologic data were available. Data for the other three basins -- Harper, Coyote, and Caves -- were limited; however, the findings in the four major areas of record are indicative of conditions throughout the study area.

Water supply sources consist of precipitation, surface inflow, subsurface inflow, and imported water. Precipitation on the valley floor is not sufficient to contribute to the water supply of the basins, except in a portion of the Upper Mojave Basin, south of the town of Hesperia, where the average annual precipitation is greater than eight inches. The average annual amount of water from this source that percolates to the ground water body is about 4,500 acre-feet. The existence of perched ground water in the same general area confirms the addition of water to the ground water body in this area.

Surface inflow to the study area from the surrounding hills and mountains averaged about 68,000 acre-feet annually during the base period. Subsurface inflow to the study area from bordering regions occurs only at the southwest boundary, where inflow to the Upper Mojave Basin contributes about 900 acre-feet annually to the water supply.

During the study base period, imported water was a minor source of supply. About 300 acre-feet of domestic water was imported annually from outside the study area to the town of Phelan.

Surface or subsurface flow between basins within the study area and water piped across these basin boundaries are items of inflow or imported water supply to the receiving basin. However, because this water originates as outflow or exported water from adjacent basins within the study area, these amounts balance out and do not increase the overall water supply.

Water use and disposal is by surface outflow, subsurface outflow, exported water, and consumptive use. Surface outflow from the study area occurs at the northeast boundary, an average annual amount of 9,600 acre-feet from Caves Basin at Afton.

There is no subsurface outflow or water export from the study area to the outlying regions.

The average annual amounts of consumptive use in the study area could only be determined for the four major basins.

These amounts were about 44,000 acre-feet for the Upper Mojave Basin, 20,000 acre-feet for the Middle Mojave Basin, 17,000 acre-feet for the Lower Mojave Basin, and 4,500 acre-feet for Lucerne Basin.

The average annual water supply, disposal, and deficiency are as follows:

AVERAGE ANNUAL AMOUNTS
In acre-feet

Basin	:	Supply	:	Disposal	:	Deficiency
Upper Mojave		74,500		81,700		7,200
Middle Mojave		39,900		45,100		5,200
Lower Mojave		26,300		31,600		5,300
Lucerne		1,700		4,600		2,900

The average annual deficiency in water supply, about 21,000 acrefect, was met by use of pumped ground water.

The deficiency in water supply was the result of increased urbanization and development of the area and the prolonged drought conditions that have prevailed in southwestern United States since about 1945.

If 1961 physical conditions had prevailed throughout the 25-year base period, the average annual overdraft would have been about 38,000 acre-feet and the corresponding average annual safe yield would have been about 85,000 acre-feet for these four basins.

The principal regions where quantitative estimates of ground water storage could be made are the Upper Mojave, Middle Mojave, Lower Mojave, and Lucerne Basins. These basins have a total storage capacity, between the ground surface and the base of the water-bearing materials, of about 48,000,000 acre-feet. There was a net decrease of 522,000 acre-feet in the amount of ground water in storage between the beginning and the end of the 25-year base period. At the close of the base period, in 1961, about 31,100,000 acre-feet of ground water remained in storage in these four basins.

Future Conditions

The study area is primarily desert, and development of farms and communities has been limited to areas along the Mojave River and the adjacent valleys where water has been readily available. However, the study area is strategically located in relation to the expanding Southern California market and will be influenced by the social and economic trends of the region, in general, and of Los Angeles, in particular.

The population of the study area is expected to increase from 55,300 in 1960-61 to 393,000 in 1990. Urban and suburban water use will rise from 6,200 acre-feet in 1960-61 to 50,000 acre-feet in 1990. Agricultural land use is expected to decline during this period, from 18,650 acres to 14,500 acres, resulting in a decrease in agricultural water use, from 60,100 acre-feet to 44,000 acre-feet annually. Conversely, water use and disposal by industry will require 5,000 acre-feet annually by 1990 -- almost double the 2,600 acre-feet needed by industry in 1960-61. These changes in population and occupation will result in a net increase in water use from about 120,000 acre-feet in 1960-61 to about 151,000 acre-feet in 1990.

Historical climatic and hydrologic conditions are assumed to continue in the future; thus, water supply from natural sources will remain at about the same level as it was

during the 25-year base study period. In view of the anticipated increase in water needs under future conditions of growth and development in the study area, water supply deficiency will amount to about 68,700 acre-feet annually by 1990, as compared to the 1960-61 deficiency of 38,600 acre-feet.

In order to provide supplemental water to meet the future needs, the Mojave Water Agency has entered into a contract with the State of California for water from the State Water Project. Deliveries of imported water are scheduled to begin in 1972. Use of this water will reduce the 1990 water deficiency from 68,700 acre-feet to 17,900 acre-feet. The remaining water supply deficiency can be met by use of pumped ground water.

Consideration was also given to possible future sources of supplemental water supply. In the event that a dam is constructed at the forks site, as proposed by the U. S. Army Corps of Engineers and studied by the U. S. Bureau of Reclamation, outflow at Afton could be reduced. The water thus conserved would be available for use in the study area. An additional potential supply of supplemental water could be developed by elimination and control of riparian native vegetation or by introduction of a planned program of reduction of ground water storage.

Water Quality

There is a wide variation in the quality and mineral character of the water in the study area. This variation is related to the source of replenishment, the geological formation in which the ground water is found, and use of water by man. Ground water influenced by the Mojave River is typically bicarbonate, with an average total dissolved solids content of about 300 parts per million. Ion exchange is indicated by a change in the character of the water from predominately calcium bicarbonate in the Upper Mojave Basin to predominately sodium bicarbonate in the downstream Middle and Lower Mojave Basins. The other most common type of ground water found in the study area is related to older alluvium. This water is typically sulfate or sulfate-chloride in character with a total dissolved solids range from 700 to 1,000 ppm.

Sodium chloride type ground water is consistently present in the fine-grained playa deposits found at lower elevations of the basins and in the older lake deposits. The total dissolved solids content ranges from 380 ppm to more than 5,300 ppm. The average is approximately 1,200 ppm.

Inflow of salts to the study area exceeds the outflow of salts at the rate of 22,000 tons per year. However, there are only a few areas in which problems due to the accumulation of salts occur. These are in the vicinity of dry lakes and near Afton.

Concluding Statements

Studies leading to this report were conducted to determine the location, amount and quality of local water supply in the basins along the Mojave River, to evaluate the adequacy of the local water supply to meet present and future water requirements, and to indicate potential sources of supplemental water.

The geologic and hydrologic information provided by this study can be used by local agencies in planning for effective use of existing surface and ground water resources of the study area and in developing supplemental sources of water. The information provided by this study points out the need and provides a foundation for a ground water basin model simulation and operational economics studies, leading to the selection by local agencies of an optimum plan of water resources management.

APPENDIX A

BIBLIOGRAPHY

BIBLIOGRAPHY

- Bader, J. S., Page, R. W., and Dutcher, L. C. "Data on Wells in the Upper Mojave Valley Area, San Bernardino County, California."
 United States Geological Survey Open File Report. 1958.
- Blaney, Harry F. and Criddle, Wayne D. "Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data."
 United States Department of Agriculture, Soil Conservation Service. 1950.
- ---. "Determining Consumptive Use and Irrigation Water Requirements."
 United States Department of Agriculture, Agricultural Research
 Service. Technical Bulletin No. 1275. December 1962.
- Blaney, Harry F., and Ewing, Paul A. "Utilization of the Waters of Mojave River, California." United States Department of Agriculture, Division of Irrigation. August 1935.
- Burnham, W. L. "Data on Water Wells in Coyote, Cronise, Soda, and Silver Lake Valleys, San Bernardino County, California." United States Geological Survey Open File Report. 1955.
- California Department of Engineering. "Report on the Utilization of Mojave River for Irrigation in Victor Valley, California."

 Sixth Biennial Report. Bulletin No. 5, Appendix C. 1918.
- California Department of Public Works, Division of Water Resources.

 "Rainfall Penetration and Consumptive Use of Water in Santa Ana
 River Valley and Coastal Plain." Bulletin No. 33. 1930.
- ---. "Mojave River Investigation." Bulletin No. 47. 1934.
- ---. "Water Quality Investigation Report No. 3, Ground Water Basins in California." November 1952.
- ---. "Investigation of the Mojave River, Barstow to Yermo." Code No. 52-6-2. December 1952.
- ---. "Mojave River Valley Investigation Victorville to Barstow." Project No. 55-6-2. June 1955.
- ---. "Investigation of Water Supply of Mojave River Fish Hatchery." November 23, 1955.
- ---. "Mojave Basin Ground Water Quality Study." Project No. 56-6-1.
 June 1956.
- California Department of Water Resources. "Memorandum Report on Investigation of Future Southern California Water Requirements." July 1956.

- ---- "Factual Report on Mojave Water Agency." November 1959.
- ---. "Investigation of Alternative Aqueduct Systems to Serve Southern California." Bulletin No. 78, and Appendixes A through E. March 1960.
- ---. "Data on Wells in the Edwards Air Force Base Area, California." Bulletin No. 91-6. 1962
- "Data on Water Wells and Springs in the Lower Mojave Valley Area, San Bernardino County, California." Bulletin No. 91-10. 1963.
- "Names and Areal Code Numbers of Hydrologic Areas in the Southern District." Office Report. April 1964.
- ---- "Feasibility of Serving the Mojave Water Agency from the State Water Project." Bulletin No. 119-12. December 1965.
- California Departments of Water Resources and Public Health. "Ground Water Quality Studies in Mojave River Valley in the Vicinity of Barstow-San Bernardino County." June 1960.
- California State Water Resources Board. "Water Resources of California." Bulletin No. 1, Chapters IX and X, pp. 481-542. 1951.
- ---. "Water Utilization and Requirements of California." June 1955.
- ---. "Water Utilization and Requirements of California." Bulletin No. 2, Volumes I and II. June 1955.
- Frye, Arthur H., Jr. "Report on Survey for Flood Control, Mojave River, San Bernardino County, California." United States Army Corps of Engineers. December 28, 1956.
- Kocher, A. E. and Cosby, S. W. "Soil Survey of the Victorville Area, California." United States Department of Agriculture, Bureau of Soils. 1924.
- Koebig and Koebig, Incorporated. "Mojave Water Agency--Supplemental Water Report." Volume I, and Appendixes A through D. March 1962.
- Kunkel, Fred. "Data on Water Wells in Cuddeback, Superior, and Harper Valleys, San Bernardino County, California." United States Geological Survey Open File Report. 1956.
- ---- "Reconnaissance of Ground Water in the Western Part of the Mojave Desert Region, California." United States Geological Survey Open File Report. 1960.

also includes water similarly consumed and evaporated by urban and nonvegetative types of land use.

Darcy's Equation - An equation applied to ground water studies, based on Darcy's Law (the flow rate through porous media is proportional to the head loss and inversely proportional to the length of the flow path). Expressed as Q = PIA, where the subsurface flow (Q) is equal to the permeability (P) of the subsurface materials, times the cross-sectional area (A) and the slope or the hydraulic gradient (I) of the ground water at the cross-sectional area.

P = gallons per day square foot

I = feet per foot

A = square feet

Q = gallons per day

Deep Percolation - See Percolation, Deep.

Ground Water - Subsurface water occurring in the zone of saturation and moving under control of the water table slope or piezometric gradient.

Ground Water Basin - As used in this report, an area underlain by waterbearing sediments capable of storing and yielding a ground water supply.

Ground Water Overdraft - For this study, the value is equal to average annual decrease in the amount of ground water in storage that occurs during a longtime period, under a particular set of physical conditions affecting the supply, use, and disposal (including pumpage) of water in the ground water basin. 1/

-130-

Ground W

ann

wat

ch

ar

Ground

Ground

Hydra

Hydr.

 $[\]frac{1}{\text{See}}$ Chapter III for specific items of water supply, use, and disposal.

- Page, R. W. and Moyle, W. R., Jr. "Data on Water Wells in the Eastern Part of the Middle Mojave Valley Area, San Bernardino County, California." Prepared by United States Department of the Interior, Geological Survey for State of California, Department of Water Resources. Bulletin No. 91-3. August 1960.
- Page, R. W., and others. "Data on Wells in the West Part of the Middle Mojave Valley Area, San Bernardino County, California." United States Geological Survey Open File Report. 1959.
- Riley, F. S. "Data on Water Wells in Lucerne, Johnson, Fry, and Means Valleys, San Bernardino County, California." United States Geological Survey Open File Report. 1956.
- Slichter, Charles S. "Field Measurements of the Rate of Movement of Underground Waters." United States Geologic Survey Water-Supply Paper No. 140. Chapter V, pp. 55-64. 1905.
- Stone, R. O. "A Sedimentary Study and Classification of Playa Lakes."
 Master's Thesis, University of Southern California. 1952.
- Stone, R. S. "Ground Water Reconnaissance in the Western Part of the Mojave Desert, California, with Particular Respect to the Boron Content of Well Water." United States Geological Survey Open File Report. 1957.
- Storie, R. E. and Trussell, D. F. "Soil Survey of the Barstow Area, California." United States Department of Agriculture, Bureau of Chemistry and Soils. August 1937.
- Thompson, David G. "Routes to Desert Watering Places in the Mojave Desert Region, California." United States Geological Survey Water-Supply Paper No. 490-B. 1921.
- ---- "The Mojave Desert Region, California." United States Geological Survey Water-Supply Paper No. 578. 1929.
- United States Congress. "Mojave River, California." House Document No. 164, Eighty-sixth Congress, First Session. June 1959.
- United States Department of the Interior, Bureau of Reclamation. "Report on Victor Project, California." April 1952.
- ---- "Report on Clearing and Controlling Phreatophytes Cost Data."
 November 1963.
- ---- "Report on Bernardo Prototype Area, Clearing Costs Data." January 1965.
- United States Department of the Interior, Geological Survey. "Lists and Analyses of the Mineral Springs of the United States." Bulletin No. 32. 1886.

- --- "Thermal Springs in the United States." Water-Supply Paper No. 679-B. 1937.
- Waring, Gerald A. "Springs of California." United States Geological Survey Water-Supply Paper No. 338. 1915.

APPENDIX B
DEFINITION OF TERMS

DEFINITION OF TERMS

- Acre-foot The volume of water required to cover one acre one foot in depth (43,560 cubic feet or 325,829 gallons).
- Applied Water The water delivered to a farmer's headgate or to an urban individual's meter, or its equivalent. Excludes precipitation.
- Blaney-Criddle Method Based on an empirical formula developed by Harry

 F. Blaney and Wayne D. Criddle for the U.S. Department of Agriculture.

 Used to obtain estimates of evapotranspiration. (For a detailed description, see California State Water Resources Board Bulletin

 No. 2 and U.S. Department of Agriculture Technical Bulletin No. 1275.)
- Character of Water A classification of water based on predominant anion and/or cation in equivalents per million (epm). Identified by the name of the ion which constitutes one-half or more of the total ions for that water group.
- Connate Water Water entrapped in the interstices of a sedimentary rock at the time it was deposited. These waters may be fresh, brackish or saline in character. Because of the dynamic geologic and hydrologic conditions in California, this definition has been altered in practice to apply to water in older formations, even though in these the water may have been altered in quality since the rock was originally deposited.
- Consumptive Use of Water Water consumed by vegetative growth in transpiration and building plant tissue, and water evaporated from adjacent soil, from water surfaces, and from foliage. It

also includes water similarly consumed and evaporated by urban and nonvegetative types of land use.

Darcy's Equation - An equation applied to ground water studies, based on Darcy's Law (the flow rate through porous media is proportional to the head loss and inversely proportional to the length of the flow path). Expressed as Q = PTA, where the subsurface flow (Q) is equal to the permeability (P) of the subsurface materials, times the cross-sectional area (A) and the slope or the hydraulic gradient (I) of the ground water at the cross-sectional area.

P = gallons per day square foot

I = feet per foot

A = square feet

Q = gallons per day

Deep Percolation - See Percolation, Deep.

Ground Water - Subsurface water occurring in the zone of saturation and moving under control of the water table slope or piezometric gradient.

Ground Water Basin - As used in this report, an area underlain by water-bearing sediments capable of storing and yielding a ground water supply.

Ground Water Overdraft - For this study, the value is equal to average annual decrease in the amount of ground water in storage that occurs during a longtime period, under a particular set of physical conditions affecting the supply, use, and disposal (including pumpage) of water in the ground water basin. 1/

 $[\]frac{1}{See}$ Chapter III for specific items of water supply, use, and disposal.

- Ground Water Safe Yield For this study, the value is equal to average annual amount of ground water that could be pumped from a ground water basin over a long-time period without causing a long-time net change in storage of ground water. The extractions must occur under a particular set of physical conditions affecting the supply, use, and disposal of water in the ground water basin. 1/
- Ground Water Storage That stage of the hydrologic cycle during which water occurs as ground water in the zone of saturation.

Ground Water Table - See Water Table.

- Hydraulic Gradient Under unconfined ground water conditions, the slope of the profile of the water table. Under confined ground water conditions, the line joining the elevations to which the water would rise in wells if they were perforated in the aquifer.
- Hydrology The applied science concerned with the waters of the earth, their occurrences, distribution, use, and circulation through the unending hydrologic cycle of precipitation; consequent runoff, infiltration, storage, use, and disposal; eventual evaporation; and reprecipitation. It is concerned with the physical and chemical reaction of water with the rest of the earth, and its relation to the life of the earth.
- Hydrology, Ground Water The branch of hydrology that treats of subsurface water -- its occurrence, movement, and storage and its
 replenishment and depletion -- also, of the properties of unconsolidated materials and rocks that control the occurrence, movement,

 $[\]frac{1}{2}$ See Chapter III for specific items of water supply, use, and disposal.

- and storage of subsurface water and of the method of investigation and utilization of subsurface water.
- Impermeable Impervious; having a texture that does not permit water to move through it perceptibly under the head differences ordinarily found in subsurface water.
- <u>Infiltration</u> The flow, or movement, of water through the soil surface into the ground.
- Overdraft See Ground Water Overdraft.
- <u>Perched Ground Water</u> Ground water occurring in a saturated zone separated from the main body of ground water by unsaturated rock or by an impervious formation.
- <u>Percolation</u> The movement or flow of water through the interstices, or the pores, of a soil or other porous media.
- Percolation, Deep The movement of water entering the zone of saturation, below the root zone.
- Period A specified division or portion of time.
 - a. Average. An arithmetical average relating to a period other than a mean period.
 - b. Base. A period chosen for detailed hydrologic analysis, because prevailing conditions of water supply and climate are approximately equivalent to mean conditions and because adequate data for such hydrologic analysis are available.
 - c. Mean. A period chosen to represent conditions of water supply and climate over a long series of years.
 - d. Annual. Any 12-month period other than the calendar year. In this study, annual period is synonymous with the runoff period, October 1 through September 30.

- Permeability The permeability (or perviousness) of rock is its capacity for transmitting a fluid. Degree of permeability depends upon the size and shape of the pores, the size, shape, and extent of their interconnections.
- Permeable Pervious, having a texture that permits water to move through it perceptibly under the head differences ordinarily found in subsurface water.
- Physical Conditions For this study, the state of man's activities,

 particularly land use -- agriculture, urban, suburban, and indus
 trial -- and the resulting physical structures affecting the supply, use, and disposal of water.
- Rising Water Ground water from the zone of saturation which appears at the ground surface, usually to a streambed, when the ground surface is at a lower elevation than the ground water table or the piezometric surface of a confined aquifer.
- Safe Yield See Ground Water Safe Yield.
- Specific Yield The ratio of the volume of water a saturated sediment will yield by gravity drainage to the total volume of the sediment ment and water prior to draining, customarily expressed in percent.
- Total Dissolved Solids (TDS) The dry residue from the dissolved matter in an aliquot of a water sample remaining after evaporation of the sample at a definite temperature.
- Transmissibility, Coefficient of The rate of flow of water, expressed in gallons per day, at the prevailing water temperature through each vertical strip, 1 foot wide, having a height equal to the thickness of the aquifer, and under a unit hydraulic gradient.

- <u>Transpiration</u> The exhalation of water vapor from the stomata of plant leaves and other surfaces.
- <u>Unconfined Ground Water</u> Ground water that is not immediately overlain by impervious materials and that moves under control of the water table slope.
- Unconformity A surface or erosion or nondeposition, usually the first, that separates younger strata from older rocks.
- <u>Vapor Transport</u> The loss of percolating water in the zone of aeration in areas of low annual precipitation, infrequent high annual precipitation, and great depth to the zone of saturation.
- Water Quality Those physical, chemical, biological, and radiological characteristics of water which affect its suitability for beneficial uses.
- <u>Water Table</u> The surface of ground water at atmospheric pressure in an unconfined aquifer. This is revealed by the levels at which water stands in wells penetrating the unconfined aquifer.
- Water Supply Surplus or Deficiency For this study, the difference between the inflow to and the outflow from a ground water basin during any given period. The outflow of water includes the consumptive use of water. A water supply surplus results when the inflow is greater than the outflow; a water supply deficiency results when the inflow is less than the outflow.

APPENDIX C

WATER SERVICE AREA

Urban and Suburban Category

Class of Land Use	Type of Land Use
Residential	. Single and multiple family houses and apartments, institutions, motels, 1- and 2-story hotels, trailer parks, and residential subdivisions under construction at time of survey.
Recreational residential	. Weekend and summer home tracts within a primarily recreational area.
Commercial	All classes of commercial enter- prises, including strip commercial, downtown commercial, and schools, but excluding 1- and 2-story hotels, motels, and institutions.
Industrial	All classes of industrial land uses involving manufacturing, processing, and packaging, but excluding extractive industries (oil, sand, and gravel), air fields, and storage, distribution, and transportation facilities.
Unsegregated urban and suburban area	.Farmsteads, dairies, livestock ranches, parks, cemeteries, and golf courses.
Included nonwater service area	Oil fields, tank farms, vacant lots, quarries, gravel pits, warehouses and storage yards, railroads, public streets, landing strips of airfields, and subdivisions with streets and utilities in place but with no buildings constructed.
Irrigated Agriculture Category	
Class of Land Use	Type of Land Use
Alfalfa	Alfalfa raised for hay, seed, or pasture

Class of Land Use (continued) Type of Land Use Pasture. Irrigated grasses and legumes other than alfalfa used for livestock forage. Truck crops Vegetables of all varieties, melons, flower seed, and nursery crops. Field crops Cotton, sorghum, sugar beets, and field corn. Deciduous fruits and nuts . All varieties. Small grains Barley, wheat, and oats. Fallow Tilled, between crops. Included nonwater service area Public highways and roads, farm access roads, canals, and other inclusions not devoted to crop

production, including idle and

abandoned lands.

APPENDIX D

WATER QUALITY CRITERIA

WATER QUALITY CRITERIA

in evaluating mineral quality of water relative to existing or anticipated beneficial uses. It should be noted that these criteria are merely guides to the appraisal of water quality. Except for those constituents which are considered toxic to human beings, these criteria should be considered as suggested limiting values. Water which exceeds one or more of these limiting values need not be eliminated from consideration as a source of supply, but other sources of better quality water should be investigated.

Criteria for Drinking Water

Criteria for appraising the suitability of water for domestic and municipal use in connection with interstate quarantine have been promulgated by the United States Public Health Service. The limiting concentrations of chemical substances in drinking water have been abstracted from these criteria and are shown in Table 35. Other organic or mineral substances may be limited if their presence renders the water hazardous for use.

Interim standards for certain mineral constituents have been adopted by the California State Board of Public Health. Based on these standards, temporary permits may be issued for drinking water supplies failing to meet the United States Public Health Service Drinking Water Standards, provided the mineral constituents in Table 36 are not exceeded.

TABLE 35

UNITED STATES PUBLIC HEALTH SERVICE DRINKING WATER STANDARDS 1962

Chemical Substance	Mandatory limit in ppm
Arsenic (As) Barium (Ba) Cadmium (Cd) Hexavalent chromium (Cr ⁺⁶) Cyanide (CN) Lead (Pb) Salenium (Se) Silver (Ag)	0.05 1.0 0.01 0.05 0.2 0.05 0.01 0.05
	Nonmandatory, but recommended limit in ppm
Alkyl benzene sulfonate (detergent) Arsenic (As) Carbon chloroform extract	0.5 0.01
(exotic organic chemicals) Chloride (Cl) Copper (Cu) Cyanide (CN)	0.2 250 1.0 0.01
Fluoride (F) (See Table 37) Iron (Fe) Manganese (Mn) Nitrate (NO ₃) Phenols Sulfate (SO ₄)	0.3 0.05 45 0.001 250
Total dissolved solids (TDS) Zinc (Zn)	500 5

Total s Sulfate Chlorid Magnesi Νī oxyger in the The Ca tenta: Water be of

maxin

mean

ď

TABLE 36

UPPER LIMITS OF TOTAL SOLIDS AND SELECTED MINERALS IN DRINKING WATER AS DELIVERED TO THE CONSUMER

	Permit	Temporary Permit	
Total solids Sulfates (SO ₄) Chlorides (Cl) Magnesium (Mg)	500 (1000)* 250 (500)* 250 (500)* 125 (125)	1500 ppm 600 ppm 600 ppm 150 ppm	

^{*} Numbers in parentheses are maximum permissible, to be used only where no other more suitable water is available in sufficient quantity for use in the system.

The relationship of infant methemoglobinemia (a reduction of oxygen content in the blood, constituting a form of asphyxia) to nitrates in the water supply has led to limitation of nitrates in drinking water. The California State Department of Public Health has recommended a tentative limit of 10 ppm nitrogen (44 ppm nitrates) for domestic water. Water containing higher concentrations of nitrates may be considered to be of questionable quality for domestic and municipal use.

The California State Board of Public Health has defined the maximum safe amounts of fluoride ion in drinking water in relation to mean annual temperature. These relationships are shown in Table 37.

TABLE 37

RELATIONSHIP OF TEMPERATURE TO FLUORIDE CONCENTRATION IN DRINKING WATER

Mean Annual	Mean monthly fluorid
Temperature	ion concentration
; 	
50°F	1.5 ppm
60°F	1.0 ppm
70°F - above	0.7 ppm

Criteria for Hardness

Even though hardness in water is not included in the foregoing standards, it is of importance in domestic and industrial uses.

Excessive hardness in water used for domestic purposes causes increased
consumption of soap and formation of scale in pipe and fixtures. Table
38 showing degrees of hardness in water has been suggested by the
United States Geological Survey.

TABLE 38

HARDNESS CLASSIFICATION

Range of hardness, expressed as CaCO3	Relative classification			
in ppm				
0 - 60 61 - 120 121 - 200 Greater than 200	Soft Moderately hard Hard Usually requires softening			

Criteria for Irrigation Water

Criteria for mineral quality of irrigation water have been developed by the Regional Salinity Laboratories of the United States

Department of Agriculture in cooperation with the University of California. Because of diverse climatological conditions and the variation in

crops and soils in California, only general limits of quality for irrigation waters can be suggested. The department uses three broad classifications of irrigation waters as listed below and in Table 39.

- Class 1 Regarded as safe and suitable for most plants under most conditions of soil and climate.
- Class 2 Regarded as possibly harmful for certain crops under certain conditions of soil or climate, particularly in the higher ranges of this class.
- Class 3 Regarded as probably harmful to most crops and unsatisfactory for all but the most tolerant.

TABLE 39
QUALITATIVE CLASSIFICATION OF IRRIGATION WATERS

Chemical properties	: Class 1 : Excellent : to good		Class 3 Injurious to unsatisfactory
Total dissolved solids, in ppm	Less than 700	700 - 2000	More than 2000
Conductance, in micromhos at 25°C	Less than 1000	1000 - 3000	More than 3000
Chlorides, in ppm	Less than 175	175 - 350	More than 350
Sodium, in percent of base constituents	Less than 60	60 - 75	More than 75
Boron, in ppm	Less than 0.5	0.5 - 2.0	More than 2.0

These criteria have limitations in actual practice. In many instances, water may be wholly unsuitable for irrigation under certain conditions of use and yet be completely satisfactory under other circumstances. Consideration also should be given to soil permeability,

drainage, temperature, humidity, rainfall, and other conditions that can alter the response of a crop to a particular quality of water.

Criteria for Industrial Uses

It is beyond the scope of this report to present water quality requirements for the various types of industry found in the Mojave River region or for the diverse processes within these industries, since such criteria are as varied as industry itself. In general, where a water supply meets drinking water standards, it is satisfactory for industrial use, either directly or following a limited amount of treatment or softening by the industry.

APPENDIX E

SPECIFIC YIELD VALUES

AND REPRESENTATIVE DRILLERS' TERMS

3 Percent (Clay)

Black rock Black schist Blue shale Boulders, chunk rock Boulders, hard Caliche Cemented boulders Clay

Clay cobblestones

Hard pan

Hard shelf Hillside clay conglomerate Lime "shelves" Rotten granite Soft granite

Sticky clay

Tight clay White quartz & Black shale

5 Percent (Sandy Clay)

Basalt Basaltic sandstone Cemented conglomerate Clay - scattered gravel Clay - scattered lime

Clay - with embedded rock

Crumbly clay Crushed rock Decomposed granite Fractured granite Gravelly clay

Hard lime shale Kaolin Limerock & Biotite clay Muck Nodules Rotten Ledge rock Sandy clay Sandy Muck Sandstone reefs Silty clay Volcanic rock White limestone

10 Percent (Silt)

Black swamp mud & silt Cemented gravels Clay - embedded gravel Coarse granulated water-bearing kaolin Limy silt River silt Silt

Soft silt Soil (Topsoil) Talc

12 Percent (Cemented Sand)

Cemented sand
Cemented sand & gravel
Conglomerate sand
Hard cemented sand
Hard sand
Sandy clay & cobbles
Water gravel with cement reef

15 Percent (Sandy Silt)

Granulated kaolin Kaolin with grit Mucky sand, gravel & bits Sandy silt

18 Percent (Coarse, Medium, or Undiff. Gravel)

Alluvial fill boulders
Brittle conglomerate - water
Brittle FM - water
Coarse, medium, or undifferentiated gravel
Cobblestone - coarse sand - some gravel
Loose "Granite" formation
Sand w/clay ribs

20 Percent (Silty Sand)

Dirty sand Hilldrift Silty sand Soft sand

22 Percent (Fine Gravel)

Fine gravel Pea gravel

26 Percent (Fine Sand)

Blow sand Dune sand Fine sand Quicksand

EXHIBIT B

IN THE SUPERIOR COURT OF THE STATE OF CALIFORNIA IN AND FOR THE COUNTY OF LOS ANGELES

THE CITY OF LOS ANGELES, a Municipal Corporation,

Plaintiff,

No. 650079

CITY OF SAN FERNANDO, a Municipal Corporation, et al., Defendants.

REPORT OF REFEREE

Volume I TEXT AND PLATES

By
STATE WATER RIGHTS BOARD
REFEREE

July, 1962

APPROVAL AND ADOPTION BY STATE WATER RIGHTS BOARD

The State Water Rights Board, Referee in the action entitled "The City of Los Angeles, a Municipal Corporation, Plaintiff, vs. City of San Fernando, a Municipal Corporation, et al., Defendants," before the Superior Court of the State of California in and for the County of Los Angeles, No. 650079, approves and adopts this "Report of Referee" dated July 1962, pursuant to the requirements of the "Order of Reference to State Water Rights Board to Investigate and Report Upon the Physical Facts (Section 2001, Water Code)," dated June 11, 1958, and the "Interim Order," dated November 19, 1958, entered by the Court in said action. In accordance with paragraph III of said Order of Reference dated June 11, 1958, the Board will file with the Court and retain in its office the basic data upon which it bases its findings.

Approved and adopted by the State Water Rights Board at a meeting duly called and held at Sacramento, California, on the 27th day of July, 1962.

Kent Silverthorne, Chairman

Ment Silverthorne, Chairman

Ralphy, McGin, Member

W. A. Alexander, Member

Selection of Base Study Period

The desirable base study period is one during which precipitation characteristics in the Upper Los Angeles River area approximate the 85-year period of record, 1872-73 through 1956-57. A further requirement of such a period is that additional hydrologic information is available sufficient to permit an evaluation of the amount, occurrence and disposal of the normal water supply under recent culture conditions. The desirable base period includes both wet and dry periods similar in magnitude and occurrence to the normal supply, and during which there are sufficient measurements and observations to relate the hydrology to recent culture.

Subsequent to 1927-28, records of stream outflow, culture distribution and water utilization on the valley floor, and ground water levels at wells are fairly comprehensive and adequate. In contrast, earlier records concerning these items are available only on a limited basis.

There is a paucity of earlier measurements required to determine basin-wide ground water levels and continuous stream outflow. Because of the aforementioned requirements and limitations, the selection of a base period was restricted to years subsequent to 1927-28.

To determine the regimen of occurrence of rain in the Upper Los Angeles River area, selected precipitation stations on the valley floor having long periods of record were studied for an indication of periods with an occurrence of rain equivalent to the normal period. The 85-year mean seasonal precipitation was used to compute the indices of wetness for

73

these selected stations, and annual averages of these indices of wetness were utilized to construct the cumulative percentage deviation mass diagram for the Upper Los Angeles River area, shown on Plate 10.

Comparison of the precipitation trends in the Upper Los Angeles
River area with those reflected by the longer record of precipitation at
Los Angeles, Pasadena, Acton and Sawtelle Soldiers Home, also shown on
Plate 10, indicates that even though the magnitude of the annual deviation
varies, the cyclic trends of these four stations are generally in agreement
with the trends indicated by precipitation records within the area.

The 29-year period, 1928-29 through 1956-57, was selected as the base study period for the following reasons:

- It was a period of normal precipitation during which sufficient records were available for purposes of determining safe yield.
- 2. It was a representative period of normal precipitation including both wet and dry periods of magnitude and occurrence similar to long-time mean supply conditions of 1872-73 through 1956-57. A wet period occurred from 1936-37 through 1944-45, and a predominantly dry period from 1945-46 through 1956-57. The 29-year period 1928-29 through 1956-57 contains nine years when precipitation was predominantly above average, that is, 115 percent of normal or greater. These nine years comprise 31 percent of the 29-year period as compared to 29 years of similar wetness occurring during the 85-year or normal period which comprise about 34 percent of that period. The average annual amount of precipitation during the 29-year period approximates the long-time mean

having the following average annual deviation from the 85-year mean expressed as a percentage thereof:

Valley lands +3.5 percent

Hill and mountain areas -2.2 percent

Combined -0.4 percent

- 3. The years immediately preceding the first and last years of this period were of below normal wetness, which thereby minimized the difference of unaccounted-for water in transit to the water table at the start and end of the period.
- 4. It includes a period of record of supply and disposal under conditions of culture which approximate those existing in 1949-50, 1954-55 and 1957-58, the years during which safe yield is to be determined.

Special Study Periods

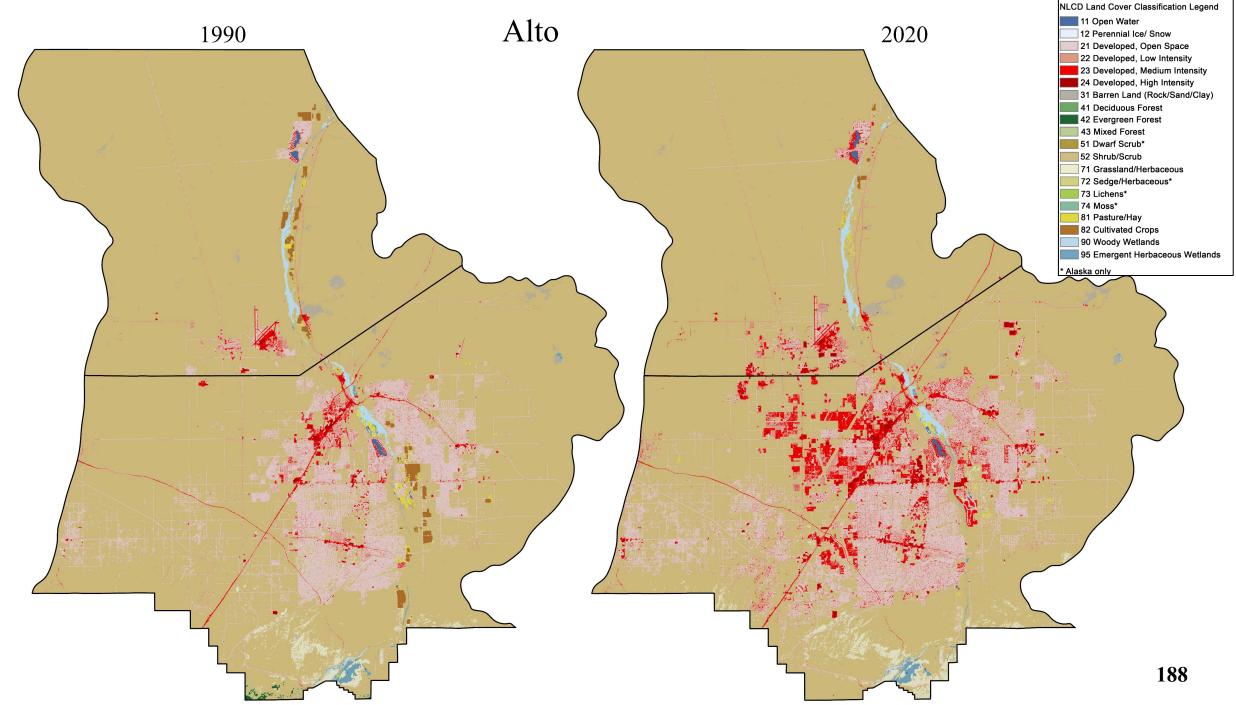
The period 1933-34 through 1948-49 is of significance in that it can be used to check change in storage computations. During this 16-year period a substantial rise and fall of ground water levels occurred with average levels at the beginning and end of the period being approximately the same elevation.

The 29-year base study period contains periods of differing practices as to the use of water which are related to change in land use, economic conditions, living standards and technological improvements.

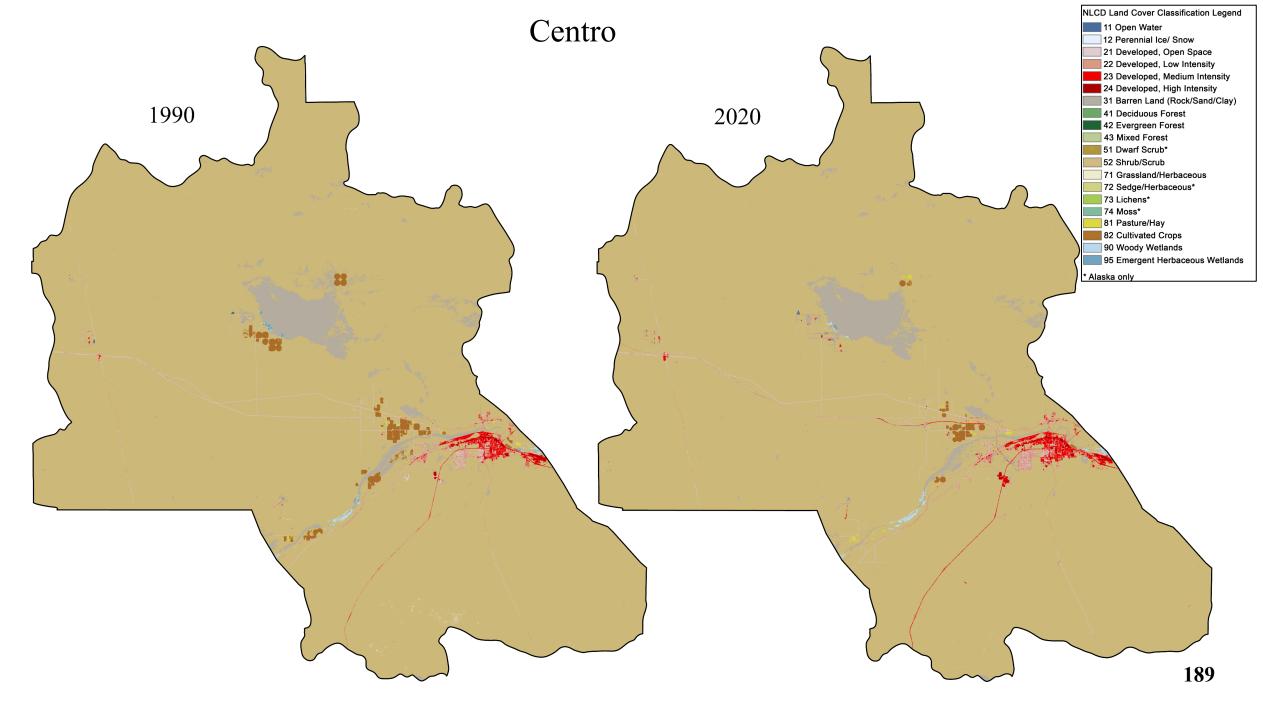
Thus, to properly evaluate the use of water under current conditions, a study period during recent years having a rain supply equivalent to the long-time mean was desirable. The 9-year period 1949-50 through 1957-58

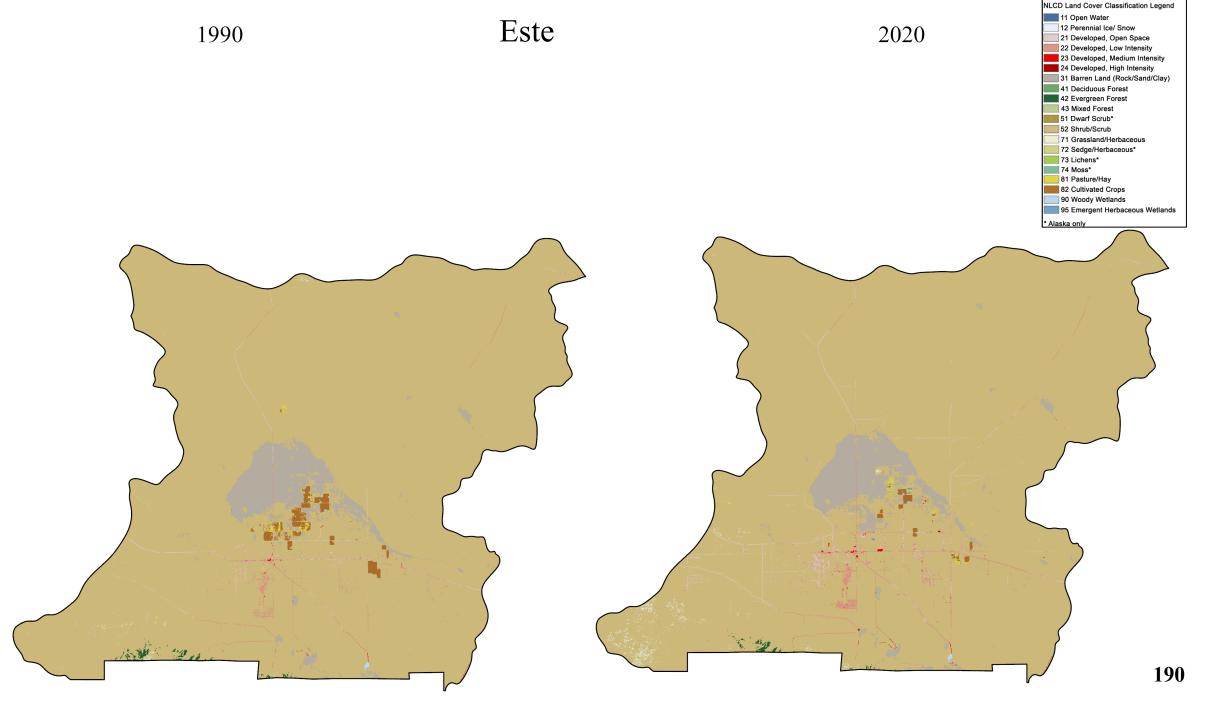
EXHIBIT C

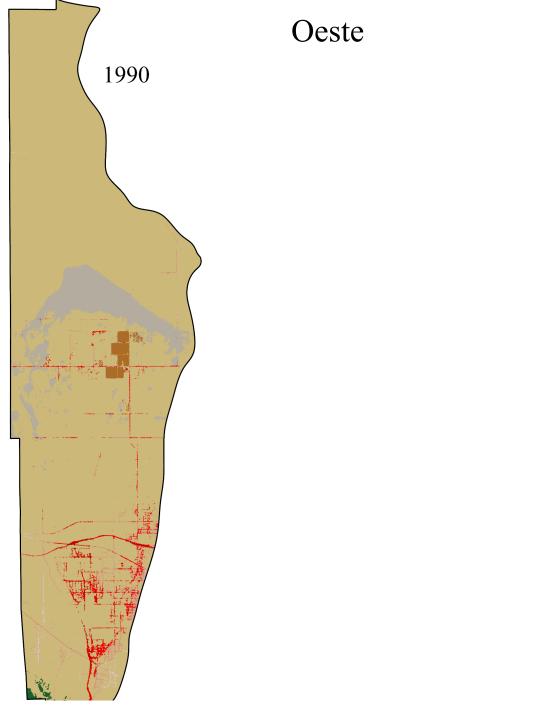
Mojave Watermaster Land Use Changes

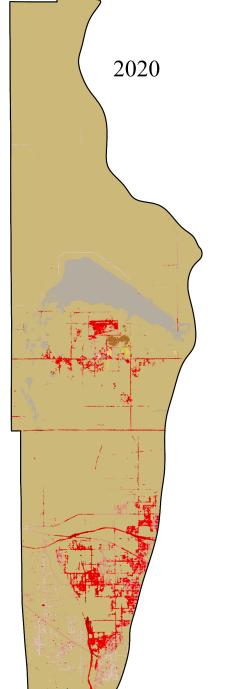

USGS Annual NLCD Land Cover Classification

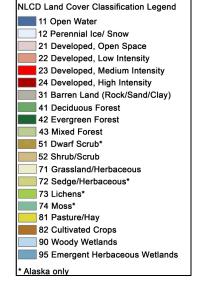
 The annual NLCD (National Land Cover Database) uses a modified Anderson Level II classification system with 16 land cover classes. For example:

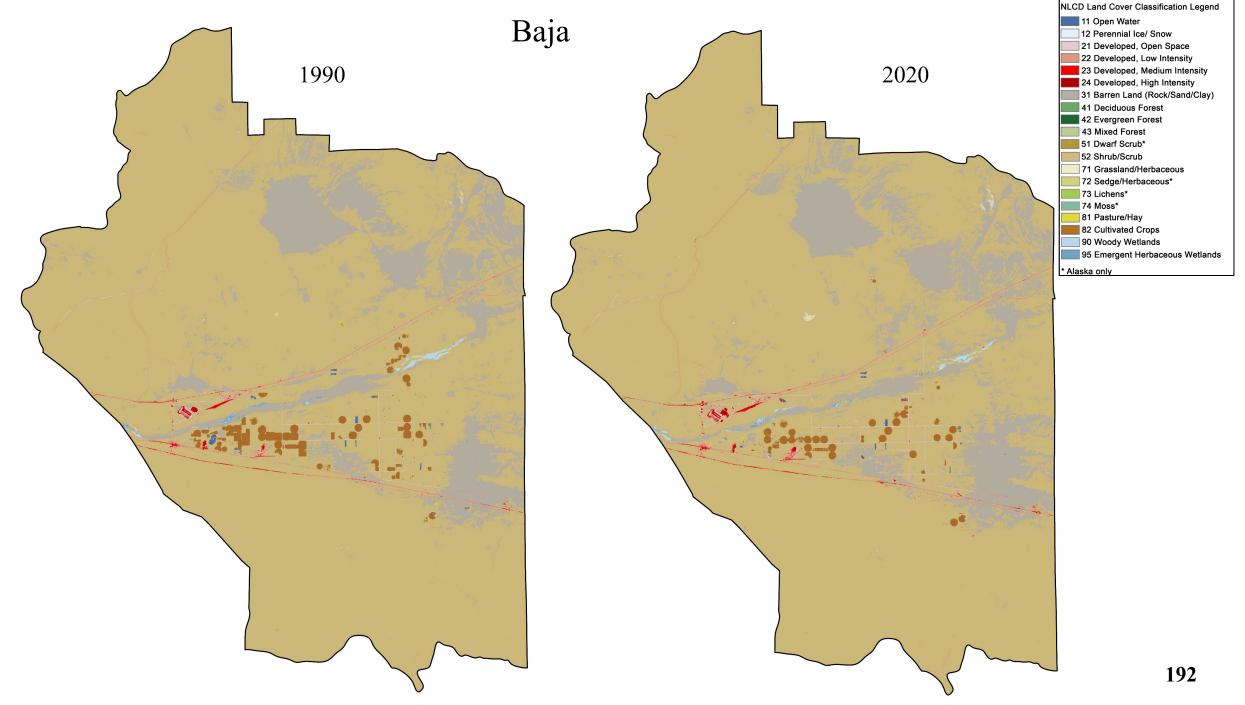

Developed	
21	Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.
22	Developed, Low Intensity- areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.
23	Developed, Medium Intensity -areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.
24	Developed High Intensity -highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.

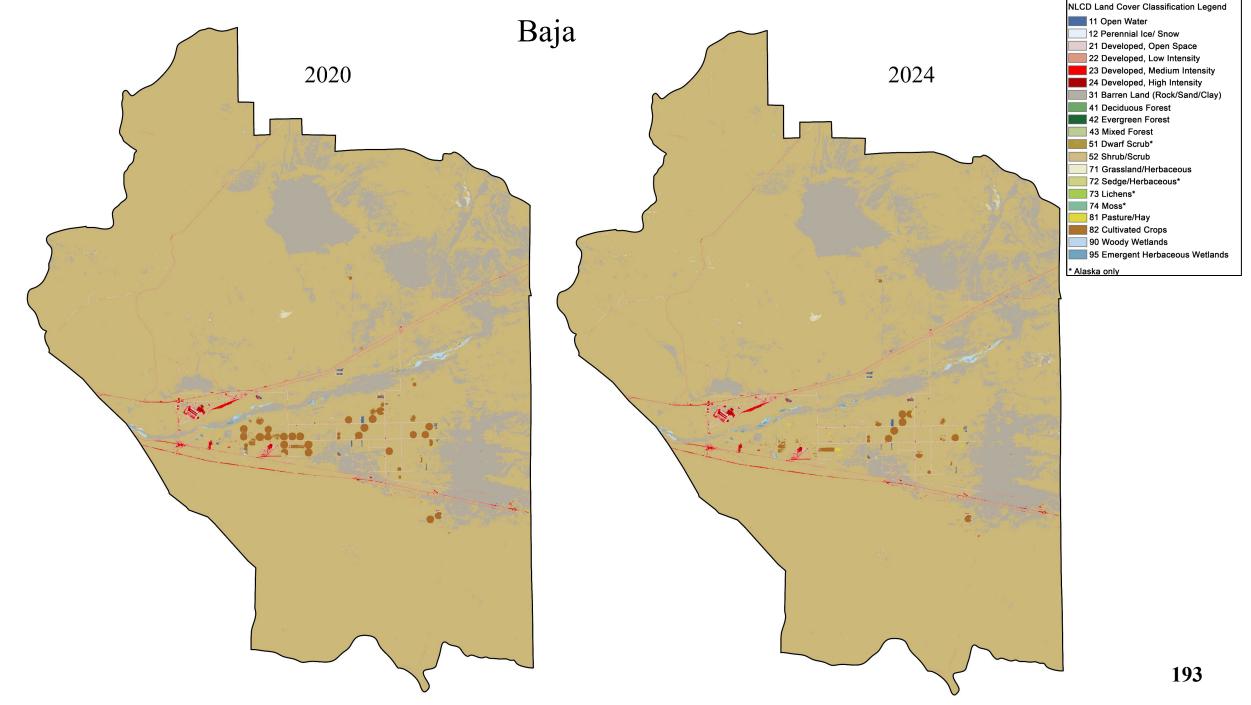

81	Pasture/Hay-areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.
82	Cultivated Crops -areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.

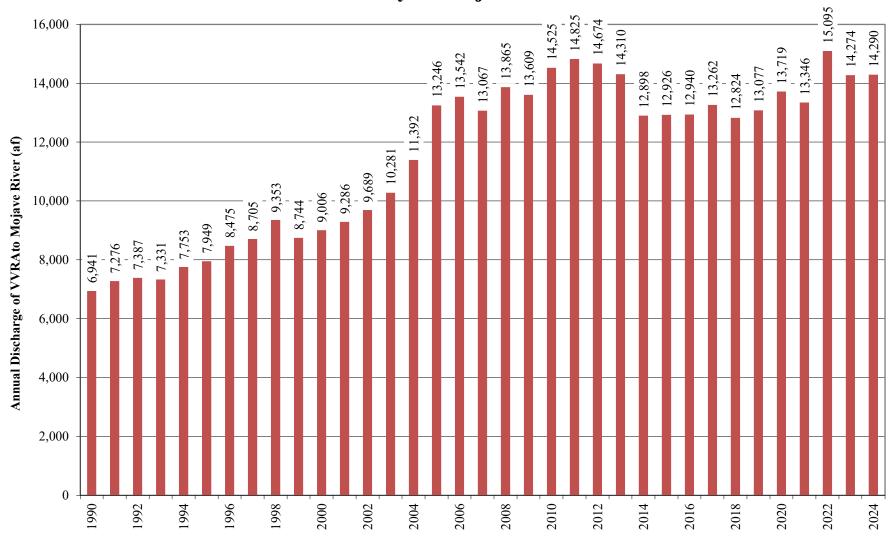

Shrubland	
51	Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.
52	Shrub/Scrub- areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.

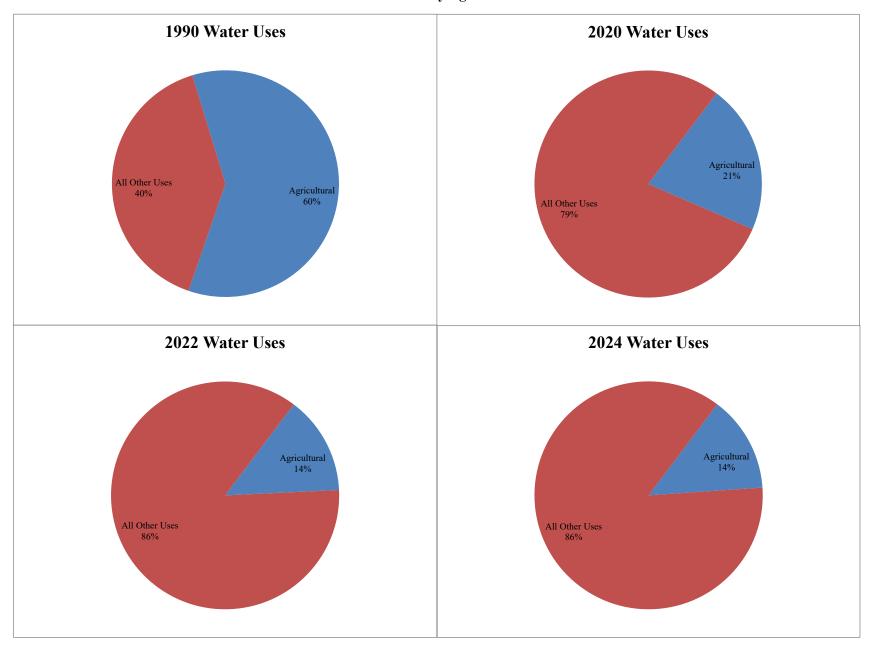



Annual National Land Cover Database (NLCD) by the U.S. Geological Survey (USGS)'s Land Cover program. Annual NLCD data was downloaded from the Multi-Resolution Land Characteristics (MRLC) site.

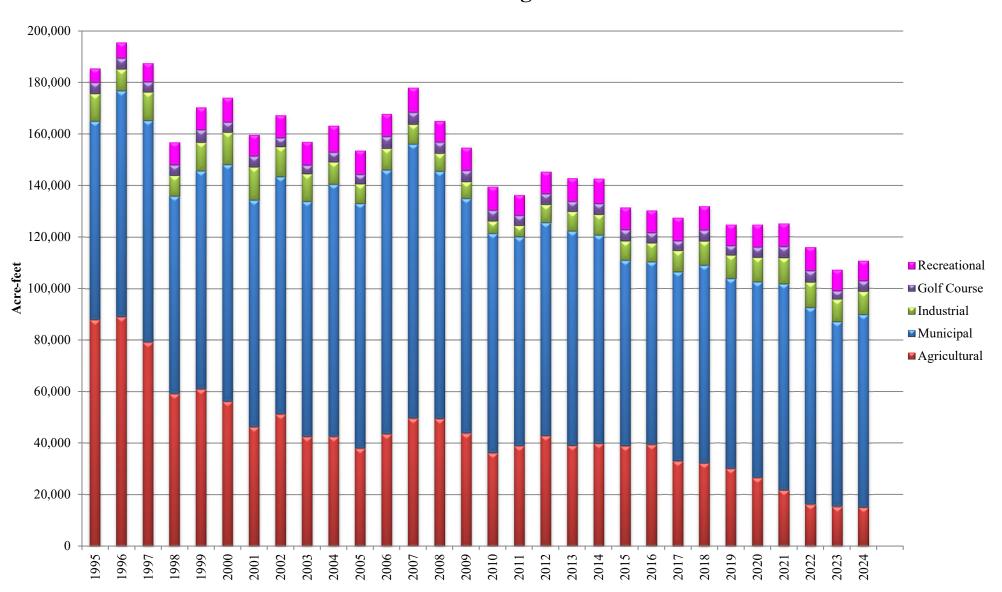




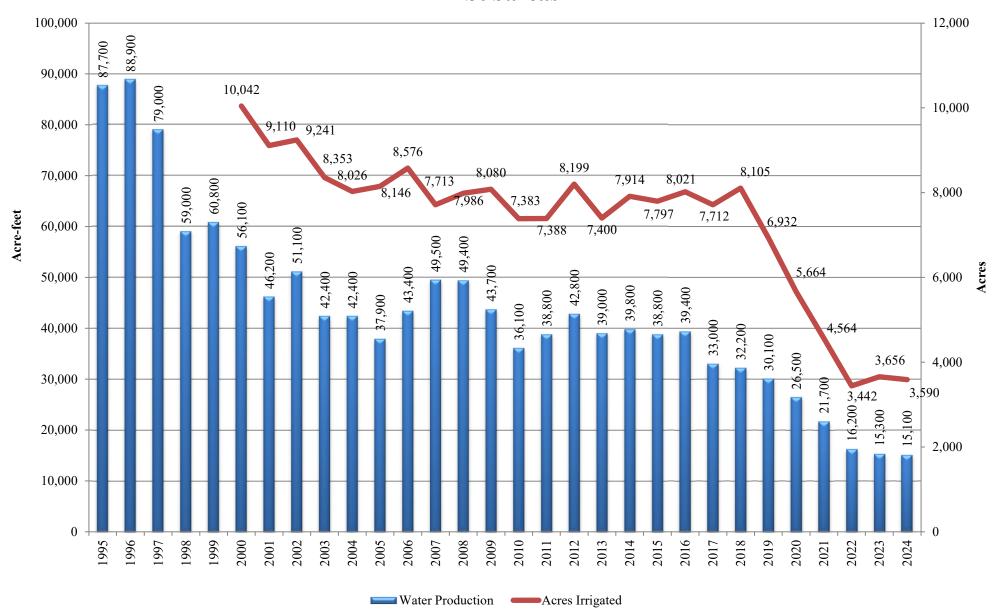



EXHIBIT D

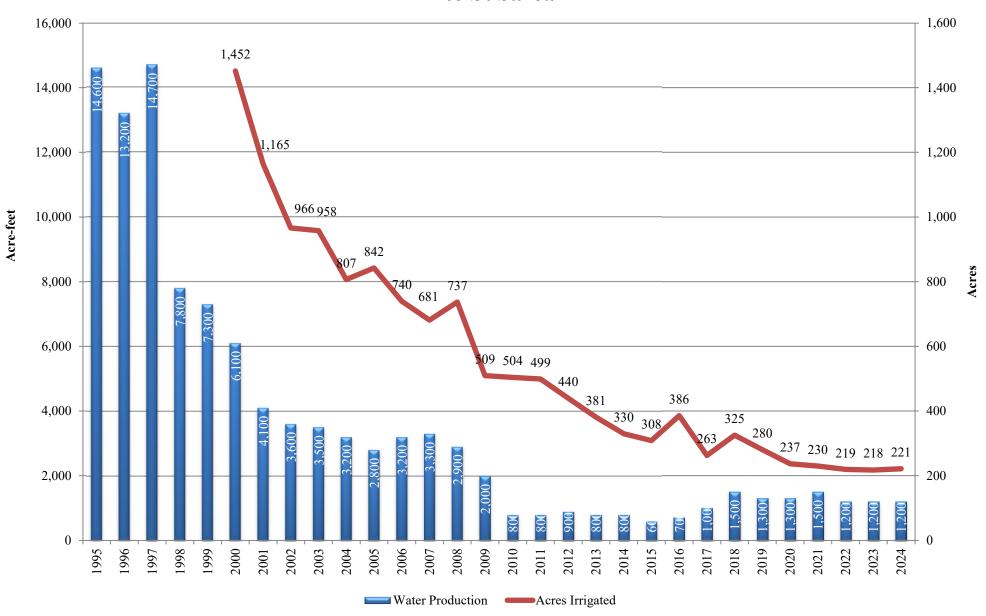
Annual Discharge of Victor Valley Wastewater Reclamation Authority to Mojave River


EXHIBIT E

Mojave Basin Area
Estimated Water Production by Agricultural and Other Uses


EXHIBIT F

Mojave Basin Area Estimated Water Production by Type of Use 1994-95 Through 2023-24


EXHIBIT G

Agricultural Water Production and Irrigated Acreage All Subareas

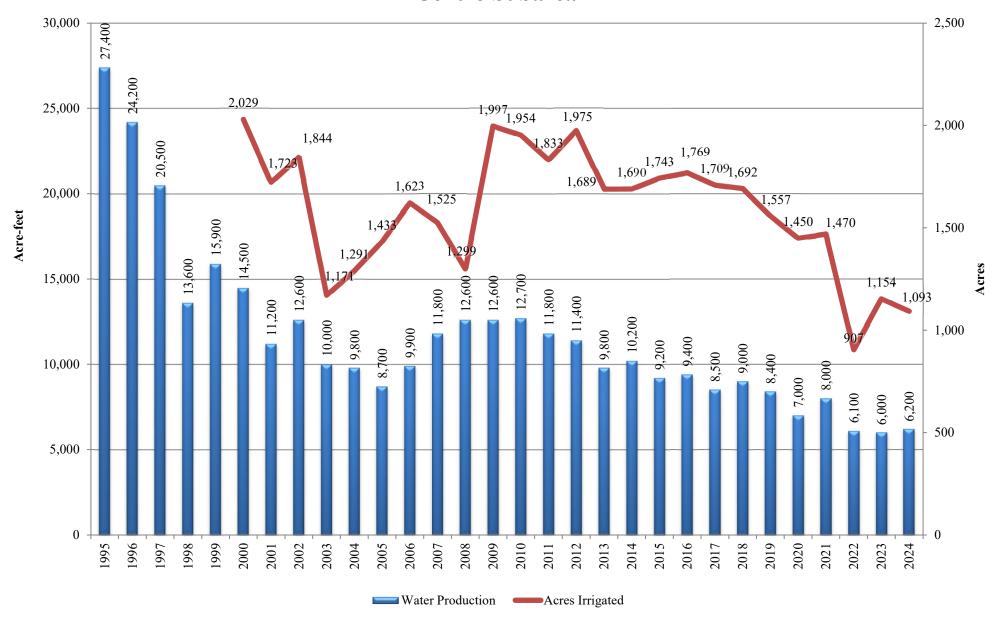
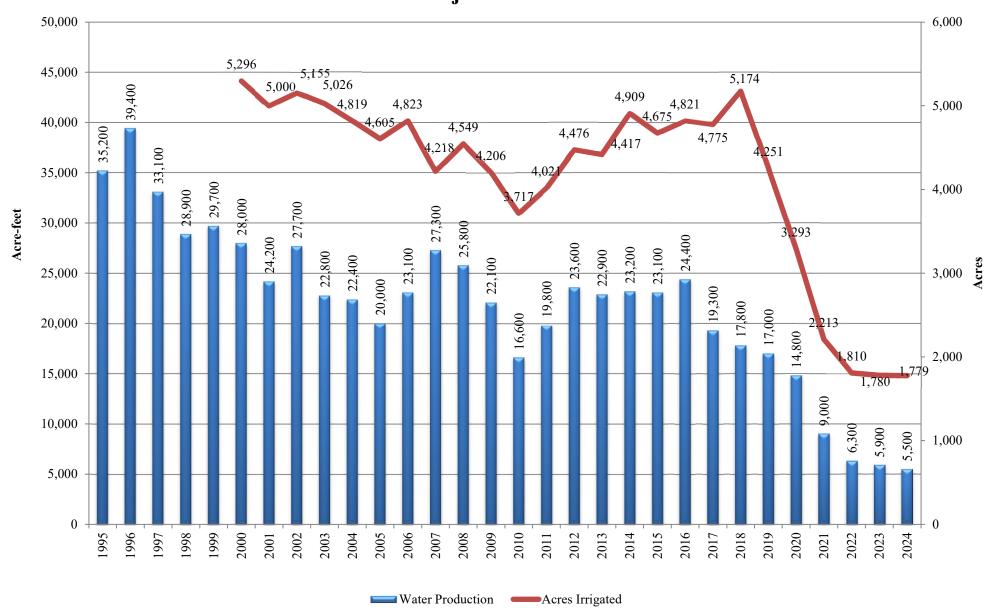
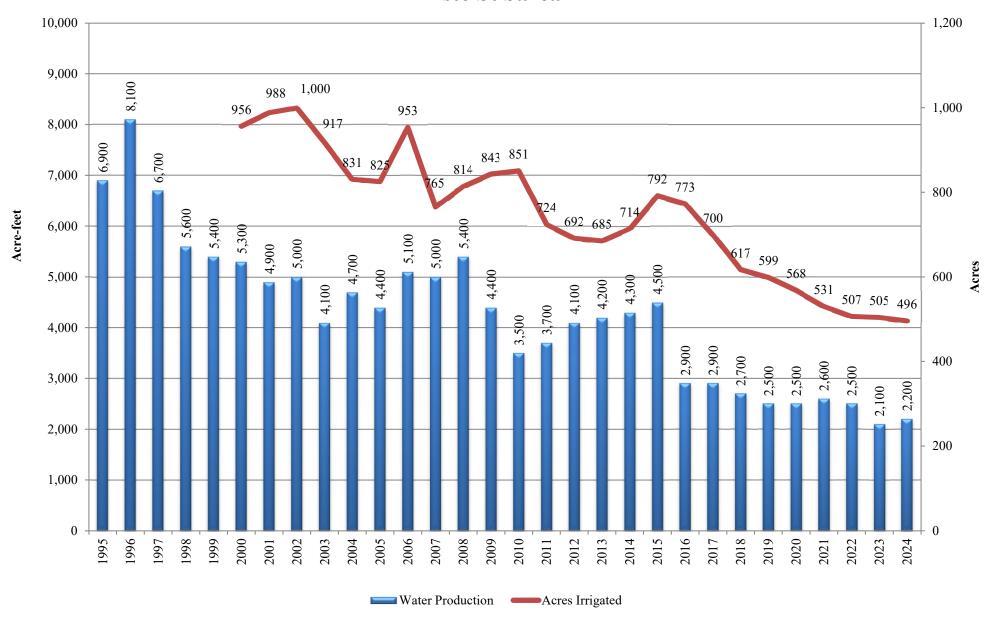
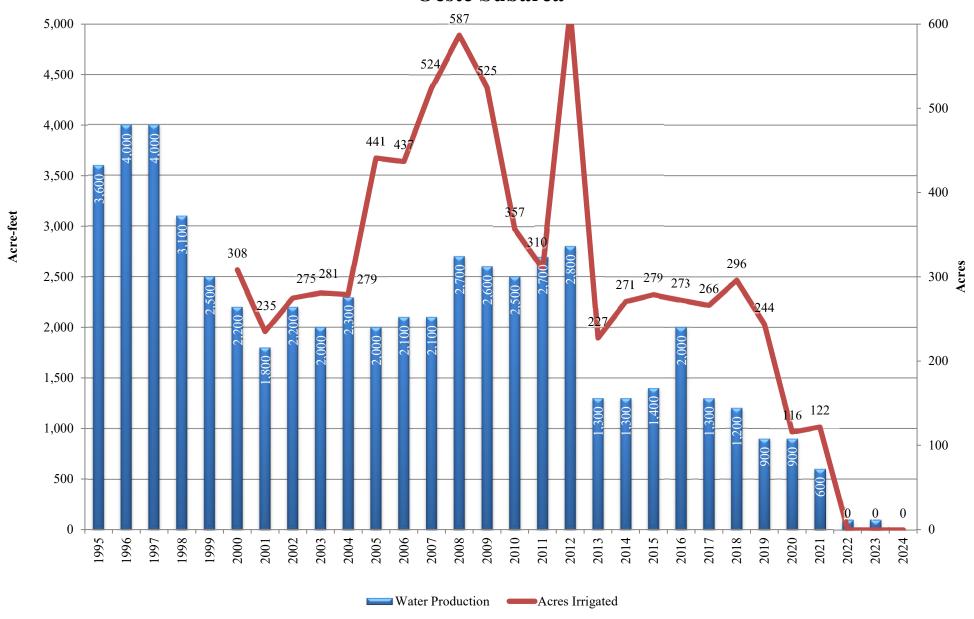


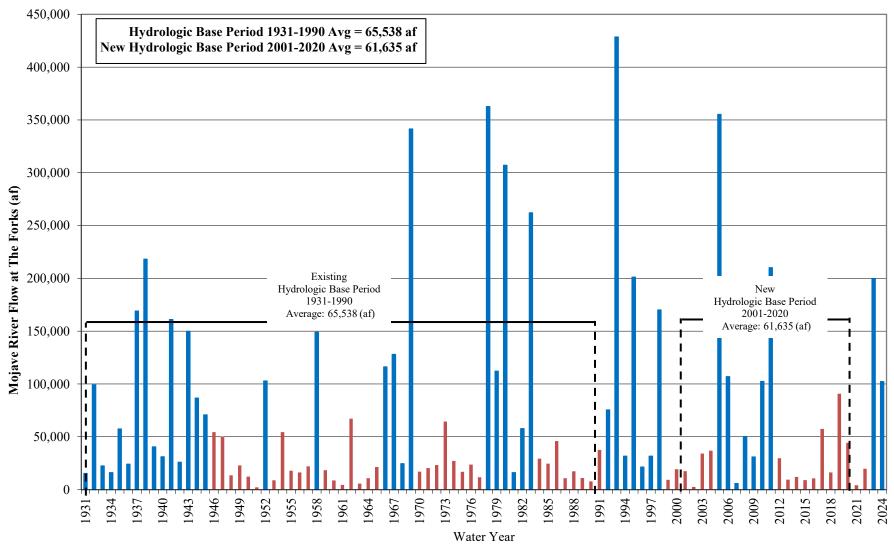
EXHIBIT H


Agricultural Water Production and Irrigated Acreage Alto Subarea

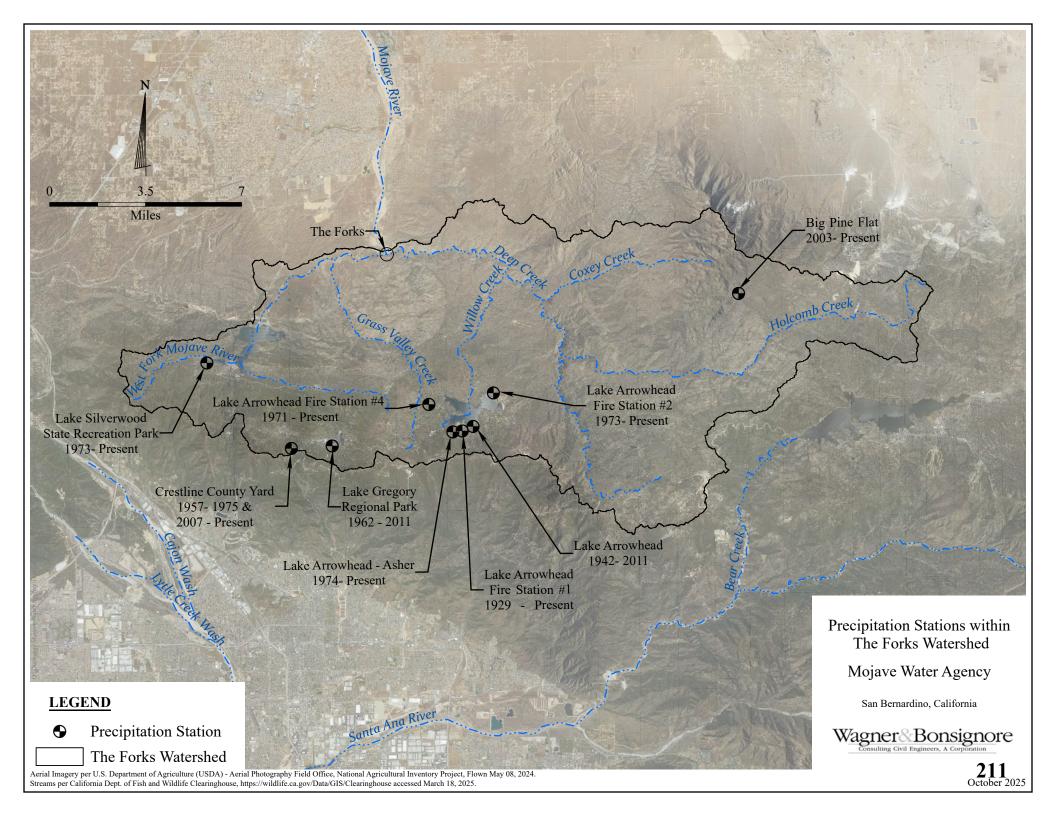

Agricultural Water Production and Irrigated Acreage Centro Subarea

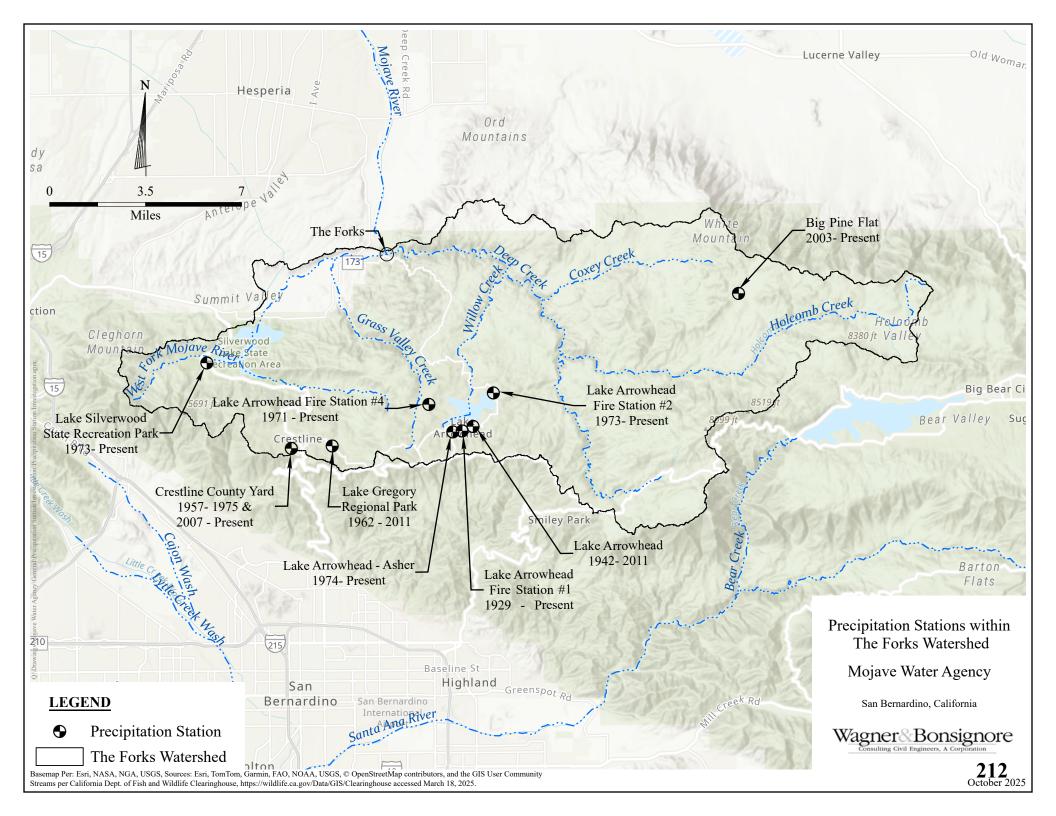

Agricultural Water Production and Irrigated Acreage Baja Subarea

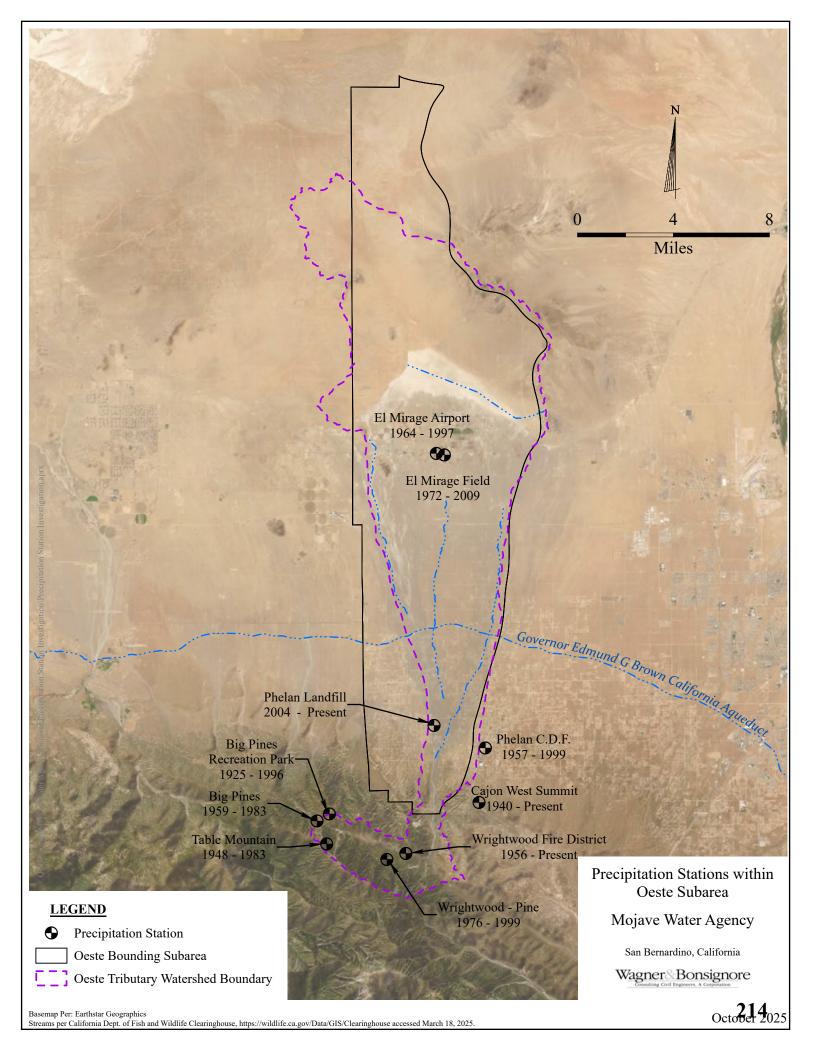
Agricultural Water Production and Irrigated Acreage Este Subarea

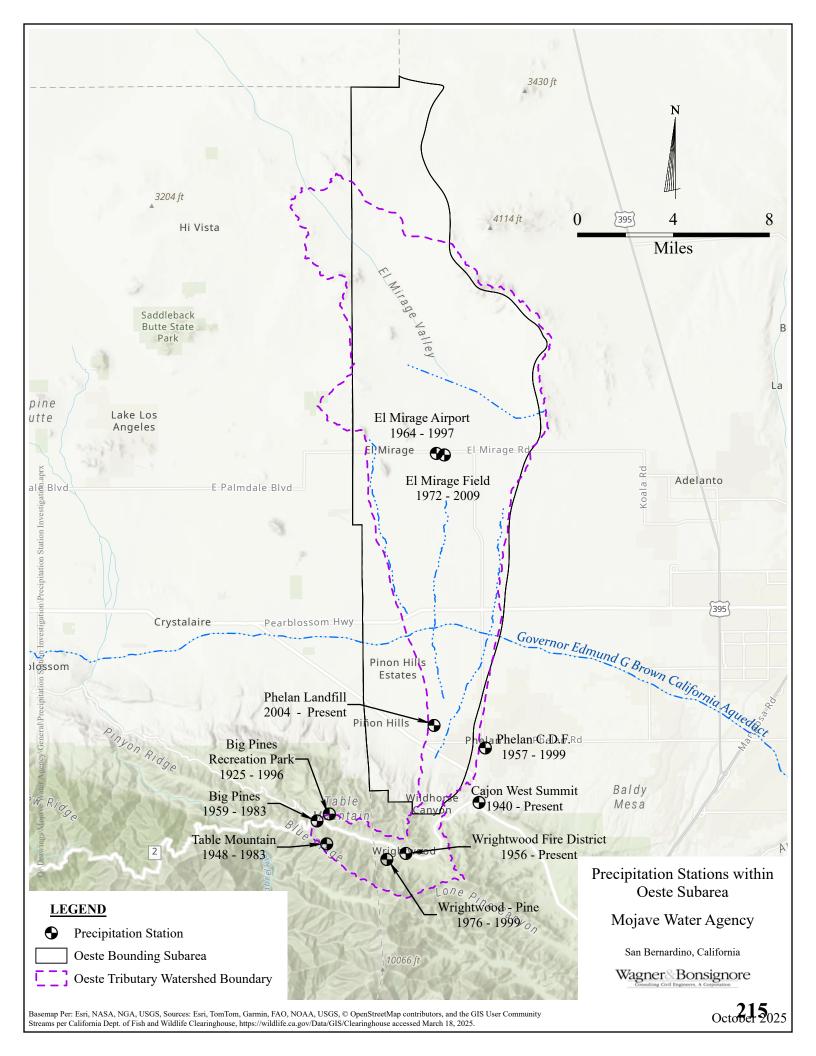


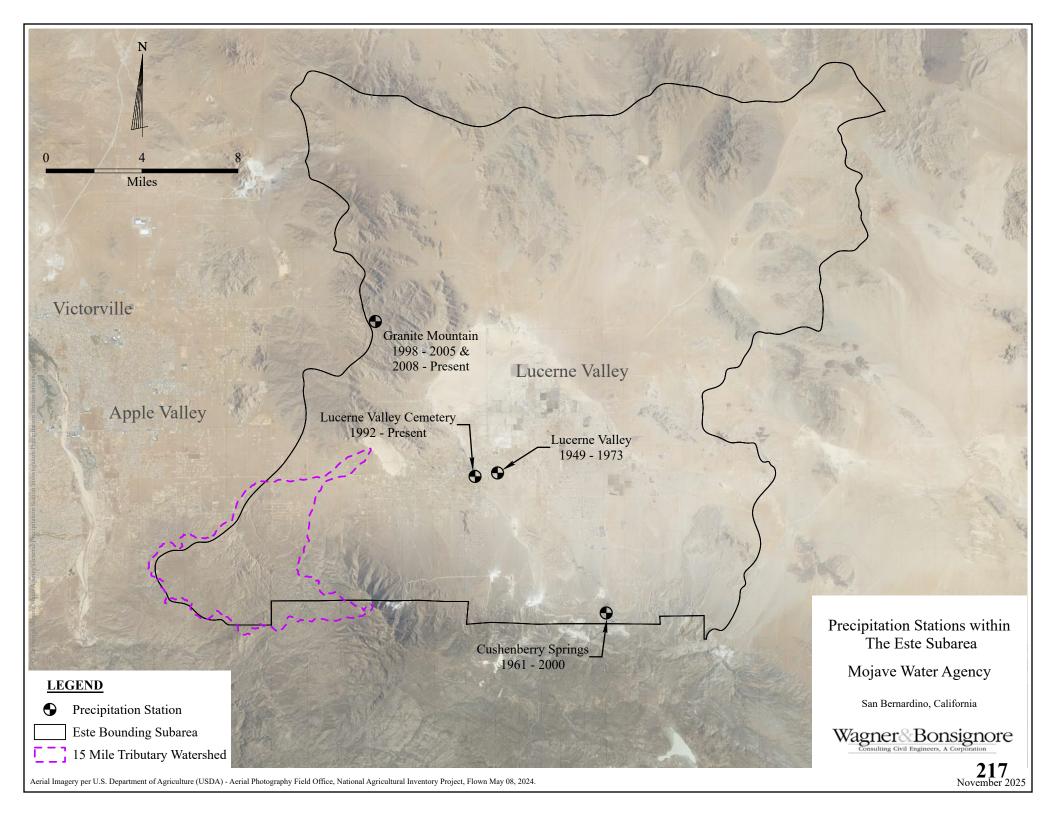
Agricultural Water Production and Irrigated Acreage Oeste Subarea

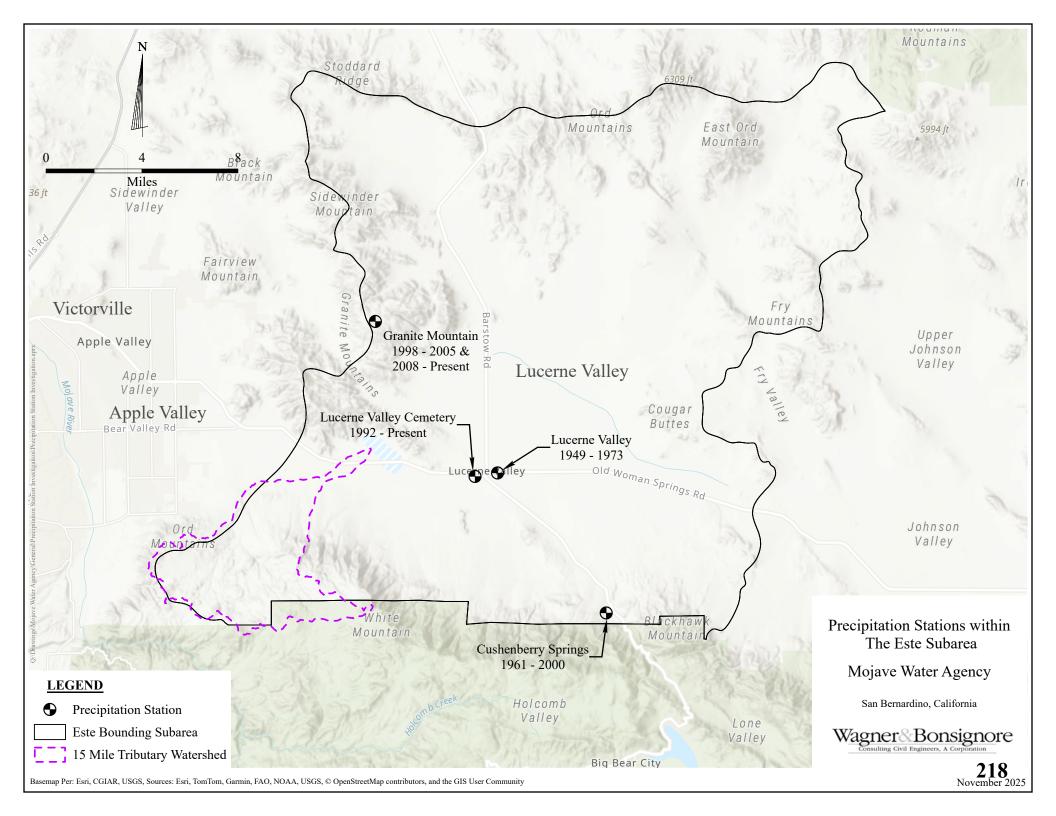

EXHIBIT I

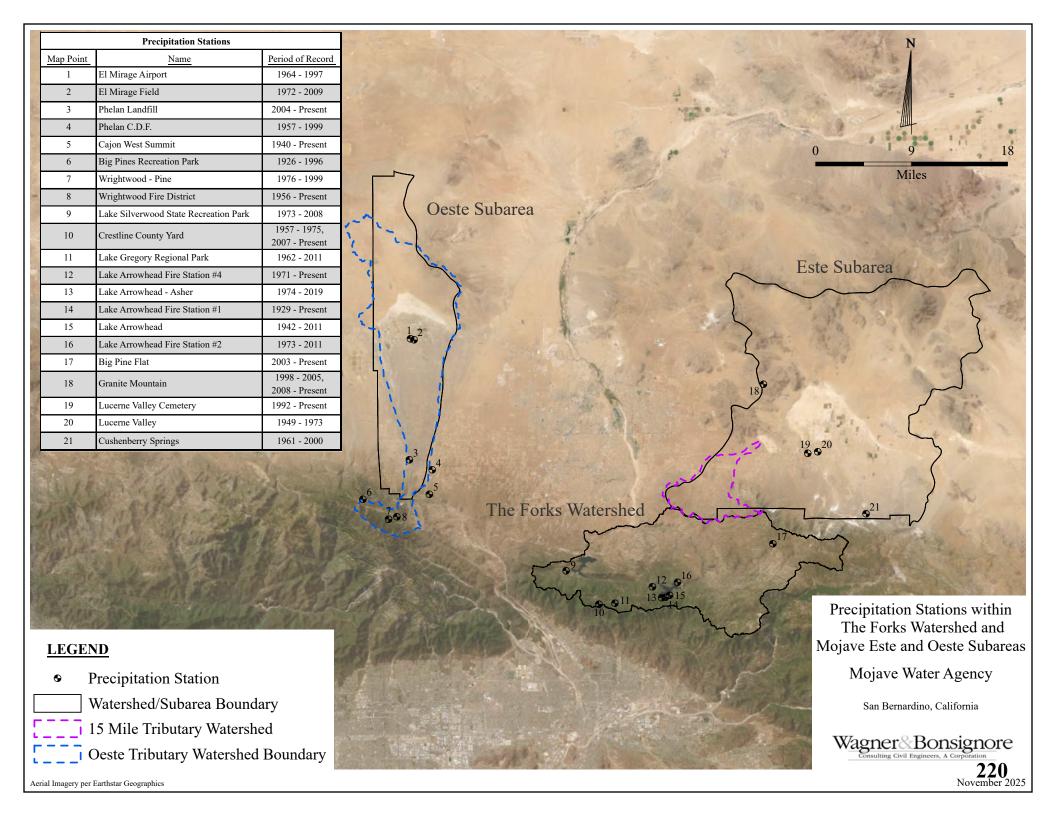

Mojave River Flow at The Forks Water Years 1931 - 2024


Note: Discharge of Mojave River at The Forks from the addition of values as reported from USGS stations at West Fork Mojave River Near Hesperia, CA (10261000), and Deep Creek Near Hesperia, CA (10260500) from 1931-1971, the greater of 10260500 and Mojave River Below Forks Reservoir Near Hesperia, CA (10261100) from 1972-1974, and the addition of West Fork Mojave River Above Mojave River Forks Reservoir Near Hesperia, CA (10260950) and 10260500 from 1975-Present.


EXHIBIT J




EXHIBIT K



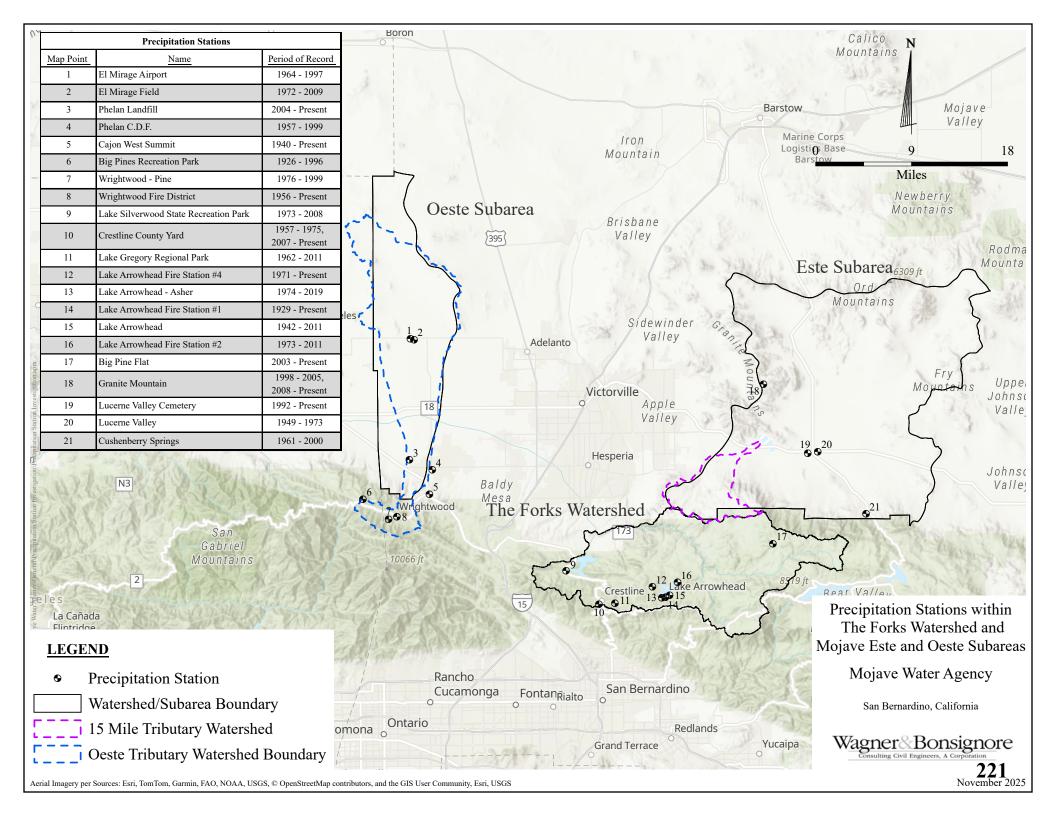

EXHIBIT L

EXHIBIT M

PROOF OF SERVICE

STATE OF CALIFORNIA } COUNTY OF SAN BERNARDINO}

I am employed in the County of the San Bernardino, State of California. I am over the age of 18 and not a party to the within action; my business address is 13846 Conference Center Drive, Apple Valley, California 92307.

On November 12, 2025, the document(s) described below were served pursuant to the Mojave Basin Area Watermaster's Rules and Regulations paragraph 8.B.2 which provides for service by electronic mail upon election by the Party or paragraph 10.D, which provides that Watermaster shall mail a postcard describing each document being served, to each Party or its designee according to the official service list, a copy of which is attached hereto, and which shall be maintained by the Mojave Basin Area Watermaster pursuant to Paragraph 37 of the Judgment. Served documents will be posted to and maintained on the Mojave Water Agency's internet website for printing and/or download by Parties wishing to do so.

Document(s) filed with the court and served herein are described as follows:

WATERMASTER ENGINEER'S STATEMENT OF REASONS FOR RECOMMEDING 2001-2020 BASE PERIOD

X (STATE) I declare under penalty of perjury under the laws of the State of California that the above is true and correct.

Executed on November 12, 2025 at Apple Valley, California.

And

Jeffrey D. Ruesch

Attn: Roberto Munoz 35250 Yermo, LLC 11273 Palms Blvd., Ste. D. Los Angeles, CA 90066-2122

Abshire, David V. PO Box # 2059 Lucerne Valley, CA 92356-2059

Attn: John McCallum

Adelanto, City Of 11600 Air Expressway Adelanto, CA 92301-1914

Attn: Jessie Florez

(adesdevon@gmail.com)

Ades, John and Devon (via email)

Attn: Pedro Dumaua (pdumaua@ducommun.com) Aerochem, Inc. (via email) 23301 S. Wilmington Ave Carson, CA 90744Attn: Lori Clifton (lclifton@robar.com) Agcon, Inc. (via email)

17671 Bear Valley Road Hesperia, CA 92345-4902

Attn: Chun Soo and Wha Ja Ahn (chunsooahn@naver.com)

Ahn Revocable Living Trust (via email)

P. O. Box 45

Apple Valley, CA 92307-0001

Attn: Simon Ahn (ssahn58@gmail.com) Ahn Revocable Trust (via email)

29775 Hunter Road

Murrieta, CA 92563-6710

Attn: Chun Soo Ahn (davidahnmd@gmail.com, chunsooahn@naver.com; davidahn0511@gmail.com)

Ahn, Chun Soo and David (via email)

P. O. Box 45

Apple Valley, CA 92307-0001

Attn: Chun Soo Ahn (chunsooahn@naver.com)

Ahn, Chun Soo and Wha Ja (via email)

P. O. Box 45

Apple Valley, CA 92307-0001

Ake, Charles J. and Marjorie M. 2301 Muriel Drive, Apt. 67 Barstow, CA 92311-6757

Attn: Paul Tsai (paul@ezzlife.com)

19625 Shelyn Drive

Rowland Heights, CA 91748-3246

Attn: Sheng Le

American States Water Company 160 Via Verde, Ste. 250 San Dimas, CA 91773-5121

Anderson, Ross C. and Betty J.

13853 Oakmont Dr.

Victorville, CA 92395-4832

Attn: Daniel B. Smith (avfcwd@gmail.com) Apple Valley Foothill County Water District

America United Development, LLC (via email)

(via email)

22545 Del Oro Road

Apple Valley, CA 92308-8206

Attn: Matthew Patterson

Apple Valley Heights County Water District

P. O. Box 938

Apple Valley, CA 92308-0938

Attn: Parks and Recreation Town of Apple

Valley

Apple Valley Unified School District

14955 Dale Evans Parkway Apple Valley, CA 92307-3061 Attn: Emely and Joe Saltmeris Apple Valley View Mutual Water Company

P. O. Box 3680

Apple Valley, CA 92307-0072

Attn: Beatriz Torres Apple Valley, Town Of 14955 Dale Evans Parkway Apple Valley, CA 92307-3061

(ArchibekFarms@gmail.com; Sandi.Archibek@gmail.com) Archibek, Eric (via email) 41717 Silver Valley Road

Newberry Springs, CA 92365-9517

Avila, Angel and Evalia 1523 S. Visalia Compton, CA 90220-3946

Attn: Sheré R. Bailey

(LegalPeopleService@gmail.com)

Bailey 2007 Living Revocable Trust, Sheré R.

(via email)

10428 National Blvd

Los Angeles, CA 90034-4664

Attn: Daniel Shaw (barhwater@gmail.com) Bar H Mutual Water Company (via email)

PO Box 844

Lucerne Valley, CA 92356-0844

Attn: John Munoz

(barlenwater@hotmail.com;)

Bar-Len Mutual Water Company (via email)

P. O. Box 77

Barstow, CA 92312-0077

Attn: Curtis Palmer

Baron, Susan and Palmer, Curtis

141 Road 2390

Aztec, NM 87410-9322

Attn: Jennifer Riley (hriley@barstowca.org)

Barstow, City of (via email)

220 East Mountain View Street -Suite A

Barstow, CA 92311

Bartels, Gwendolyn J.

1117 Meadow Lake Loop

Buhl, ID 83316-

Attn: Angelyn Bass (angelynbass@yahoo.com; avbassenterprises@gmail.com) Bass Trust, Newton T. (via email)

PO Box 22759 Santa Fe, NM 87502-

Beinschroth Trust, Andy 6719 Deep Creek Road Apple Valley, CA 92308-8711

Attn: Deborah Stephenson

(stephenson@dmsnaturalresources.com; Jason.Murray@bnsf.com; Blaine.Bilderback@bnsf.com) BNSF Railway Company (via email) 602 S. Ferguson Avenue, Suite 2

Box, Geary S. and Laura P. O. Box 402564 Hesperia, CA 92340-2564

Bozeman, MT 59718-

Brown, Jennifer 10001 Choiceana Ave. Hesperia, CA 92345

(bubierbear@msn.com) Bubier, Diane Gail (via email) 46263 Bedford Rd.

Newberry Springs, CA 92365-9819

(kjbco@yahoo.com) Bush, Kevin (via email) 7768 Sterling Ave.

San Bernardino, CA 92410-4741

Attn: Robert W. Bowcock CalMat Company 405 N. Indian Hill Blvd. Claremont, CA 91711-4614

Attn: Tony Camanga Camanga, Tony and Marietta 2309 Highland Heights Lane Carrollton, TX 75007-2033 Attn: Remo E. Bastianon Bastianon Revocable Trust 9484 Iroquois Rd.

Apple Valley, CA 92308-9151

Attn: Chuck Bell (Chuckb193@outlook.com; Chuckb193@outlook.com)

Bell, Charles H. Trust dated March 7, 2014

(via email) P. O. Box 193

Lucerne Valley, CA 92356-0193

Attn: Deborah Stephenson (stephenson@dmsnaturalres

(stephenson@dmsnaturalresources.com) BNSF Railway Company (via email) 602 S. Ferguson Avenue, Suite 2 Bozeman, MT 59718-6483

Attn: Marvin Brommer Brommer House Trust 9435 Strathmore Lane

Riverside, CA 92509-0941

Bruneau, Karen 19575 Bear Valley Rd. Apple Valley, CA 92308-5104

Attn: Noah Furie (noah@bfcloans.com) Budget Finance Company (via email)

PO BOX 641339

Los Angeles, CA 90064-6339

Attn: Kirstie Wright (Kirstie.Wright@associa.us)

Calico Lakes Homeowners Association (via

email)

11860 Pierce Street, Suite 100 Riverside, CA 92505-5178

Attn: Leanna East (least@calportland.com)
CalPortland Company - Agriculture (via email)

P. O. Box 146

Oro Grande, CA 92368-0146

Attn: Myron Campbell II Campbell, M. A. and Dianne 19327 Cliveden Ave Carson, CA 90746-2716 Attn: Mike Beinschroth (Beinschroth@gmail.com)

Beinschroth Family Trust (via email)

18794 Sentenac Road

Apple Valley, CA 92307-5342

Best, Byron L. 21461 Camino Trebol Lake Forest, CA 92630-2011

Borja, Leonil T. and Tital L. 20784 Iris Canyon Road Riverside, CA 92508-

Attn: Paul Johnson

Brown Family Trust Dated August 11, 1999

26776 Vista Road

Helendale, CA 92342-9789

Attn: Ian Bryant (irim@aol.com)

Bryant Family Trust dated May 9, 2007 (via

email)

17166 Sequoia Street Hesperia, CA 92345-

Bunnell, Dick

8589 Volga River Circle

Fountain Valley, CA 92708-5536

Attn: Donald Larson (Donald.Larson@dot.ca.gov; michael.lemke@dot.ca.gov)

California Department Of Transportation (via

email) 175 W. Cluster

San Bernardino, CA 92408-1310

Attn: Leanna East (least@calportland.com) CalPortland Company - Oro Grande Plant (via

email) P. O. Box 146

Oro Grande, CA 92368-0146

Carlton, Susan 445 Via Colusa Torrance, CA 90505-

Attn: Denise Parra Casa Colina Foundation P.O. Box 1760

Lucerne Valley, CA 92356

Attn: Paco Cabral (paco.cabral@wildlife.ca.gov; askregion6@wildlife.ca.gov; aaron.johnson@wildlife.ca.gov)

CDFW - Mojave River Fish Hatchery (via

email)

12550 Jacaranda Avenue Victorville, CA 92395-5183

Attn: Nancy Ryman

Chamisal Mutual Water Company

P. O. Box 1444

Adelanto, CA 92301-2779

Attn: Micahel Chisram Chisram, et al. 414 S. Lincoln Ave.

Monterey Park, CA 91775-3323

Christison, Joel P. O. Box 2635

Big River, CA 92242-2635

Attn: Manoucher Sarbaz Club View Partners

9903 Santa Monica Blvd., PMB #541 Beverly Hills, CA 90212-1671

Contratto, Ersula 13504 Choco Road

Apple Valley, CA 92308-4550

Attn: Jay Hooper (jayho123@gmail.com) Crown Cambria, LLC (via email)

9860 Gidley St.

El Monte, CA 91731-1110

Attn: Steve and Dana Rivett
Daggett Ranch, LLC
P. O. Box 112

Daggett, CA 92327-0112

Attn: Danielle Stewart

(danielle.stewart@wildlife.ca.gov; Richard.Kim@wildlife.ca.gov; Alisa.Ellsworth@wildlife.ca.gov) CDFW - Camp Cady (via email)

4775 Bird Farm Road Chino Hills, CA 91709-3175

Attn: Environmental (valorie.moore@cemex.com; jamiee.nido@cemex.com) Cemex, Inc. (via email) 16888 North E. Street Victorville, CA 92394-2999

Attn: Carl Pugh (talk2betty@aol.com;

cpugh3@aol.com)

Cheyenne Lake, Inc. (via email) 44660 Valley Center Rd. Newberry Springs, CA 92365-

Choi, Yong II and Joung Ae 34424 Mountain View Road Hinkley, CA 92347-9412

Attn: Hwa-Yong Chung

Chung, et al. 11446 Midway Ave.

Lucerne Valley, CA 92356-8792

Attn: Jaehwan Lee Come Mission, Inc. 9965 Baker Road

Lucerne Valley, CA 92365-8490

Attn: George Starke Corbridge, Linda S. 8743 Vivero St

Rancho Cucamonga, CA 91730-

Attn: Alessia Morris

Crystal Lakes Property Owners Association

P. O. Box 351

Yermo, CA 92398-0351

Attn: Aileen Yeung c/o Clearway Engergy (aileen.yeung@clearwayenergy.com)

Daggett Solar Power 3 LLC (via email)

1099 18th Street, Suite 2520 Denver, CO 80202-1908 Attn: San Bernardino Co Regional Parks CDFW - Mojave Narrows Regional Park 268 W. Hospitality Lane, Suite 303 San Bernardino, CA 92408-3241

Attn: Jennifer Cutler Center Water Company

P. O. Box 616

Lucerne Valley, CA 92356-0616

Attn: Byung Koo Chin (JohnChinm3@gmail.com)

Chin Family Life Estate Trust (via email)

15648 Meridian Road

Lucerne Valley, CA 92356-9008

(joan.chong7@gmail.com; joancksp@hotmail.com) Chong, Joan (via email) 1054 N. Antonio Circle Orange, CA 92869-1966

Clark, Arthur P. O. Box 4513

Blue Jay, CA 92317-4513

Conner, William H. 11535 Mint Canyon Rd. Agua Dulce, CA 91390-4577

Cross, Sharon I. P. O. Box 922

Lucerne Valley, CA 92356

Attn: Shanna Mitchell (daggettcsd@aol.com;

daggettcsd@outlook.com; daggettwater427@gmail.com)

Daggett Community Services District (via

email)

P.O. Box 308

Daggett, CA 92327-0308

Darr, James S. 40716 Highway 395 Boron, CA 93516

Attn: Alan L. De Jong De Jong Family Trust 46561 Fairview Road

Newberry Springs, CA 92365-9230

Attn: Penny Zaritsky

(pennyzaritsky2000@yahoo.com) Desert Girlz LLC (via email)

P. O. Box 709

Lucerne Valley, CA 92356-0709

Attn: Judith Dolch-Partridge, Trustee Dolch Living Trust Robert and Judith

4181 Kramer Lane

Bellingham, WA 98226-7145

Attn: David Dorrance

Dorrance, David W. and Tamela L.

118 River Road Circle Wimberley, TX 78676-5060

Evenson, Edwin H. and Joycelaine C.

P. O. Box 66

Oro Grande, CA 92368-0066

(purplebuny@juno.com) Fejfar, Monica Kay (via email)

34080 Ord Street

Newberry Springs, CA 92365-9791

(ropingmom3@yahoo.com) Finch, Jenifer (via email) 9797 Lewis Lane

Apple Valley, CA 92308-8357

Attn: Jerome Fisher Fisher Trust, Jerome R. 7603 Hazeltine Ave Van Nuys, CA 91405-1423

(cfrates@renewablegroup.com)
Frates, D. Cole (via email)

RRG CM, 926 N Sycamore Ave Ste 725

Los Angeles, CA 90038-2382

Gabrych Family Trust dated October 9, 2007

2006 Old Highway 395 Fallbrook, CA 92028 Attn: Randy Wagner

Dennison, Quentin D. - Clegg, Frizell and Joke

44579 Temescal Street Newberry Springs, CA 92365

Attn: Denise Courtney

Desert Springs Mutual Water Company

P. O. Box 396

Lucerne Valley, CA 92356-0396

Donaldson, Jerry and Beverly

16736 B Road Delta, CO 81416-8501

Attn: David Looper Douglass, Tina P.O. Box 1730

Lucerne Valley, CA 92356-

Attn: Stephanie L. Evert (severt2166@aol.com)

Evert Family Trust (via email)

19201 Parker Circle

Villa Park, CA 92861-1302

(wwcc0626@gmail.com) Feng, Jinbao (via email) 33979 Fremont Road

Newberry Springs, CA 92365-9136

Attn: Alex and Jerrica Liu (alexliu1950@gmail.com; alexroseanneliu@yahoo.com) First CPA LLC (via email) 46669 Valley Center Rd

Newberry Springs, CA 92365-

Attn: Richard Bruce Fitzwater (rickfitzwater@gmail.com)

Fitzwater, Survivor's Trust (via email)

12372 E Parks Road Athol, ID 83801-5362

Attn: Deborah A. Friend Friend, Joseph and Deborah

P. O. Box 253

Barstow, CA 92312-0253

Gabrych Family Trust dated October 9, 2007

2006 Old Highway 395 Fallbrook, CA 92028-8816 Attn: Marie McDaniel

Desert Dawn Mutual Water Company

P. O. Box 392

Lucerne Valley, CA 92356-0392

Attn: Debby Wyatt DLW Revocable Trust 13830 Choco Rd.

Apple Valley, CA 92307-5525

Attn: Virginia Shaw Dora Land, Inc. P. O. Box 1405

Apple Valley, CA 92307-0026

Dowell, Leonard 345 E Carson St. Carson, CA 90745-2709

Attn: David Dittenmore

(d2dittemore@bop.gov; rslayman@bop.gov) Federal Bureau of Prisons, Victorville (via

email)

P. O. Box 5400

Adelanto, CA 92301-5400

Ferro, Dennis and Norma 1311 1st Ave. N

Jacksonville Beach, FL 32250-3512

Attn: Carl Fischer (carlsfischer@hotmail.com;

fischer@fischercompanies.com)

Fischer Revocable Living Trust (via email)

1372 West 26th St.

San Bernardino, CA 92405-3029

Attn: Gary Juatco Foothill Estates MHP, LLC 9454 Wilshire Blvd., Ste. 920 Beverly Hills, CA 90212-2925

Attn: Mark Asay (bettybrock@ironwood.org;

waltbrock@ironwood.org)

Fundamental Christian Endeavors, Inc. (via

email)

49191 Cherokee Road Newberry Springs, CA 92365

Gaeta, Miguel and Maria 9366 Joshua Avenue

Lucerne Valley, CA 92356-8273

Attn: Jay Storer Gaeta, Trinidad 10551 Dallas Avenue Lucerne Valley, CA 92356 Garcia, Daniel 223 Rabbit Trail

Lake Jackson, TX 77566-3728

Attn: Sang Hwal Kim Gardena Mission Church, Inc. P. O. Box 304

Lucerne Valley, CA 92356-0304

Garg, Om P.

530 Technology Drive, Suite 100 Irvine, CA 92618-1350

Attn: Brent Peterson Gayjikian, Samuel and Hazel 34534 Granite Road Lucerne Valley, CA 92356-

Attn: Jeffrey Edwards (jedwards@fbremediation.com.) GenOn California South, LP (via email) P. O. Box 337

Attn: Beinni Le (beinni.Le@gswater.com) Golden State Water Company (via email)

160 Via Verde, Ste. 250 San Dimas, CA 91773-5121 Attn: Beinni Lee (beinni.Le@gswater.com) Golden State Water Company (via email)

160 Via Verde, Ste. 250 San Dimas, CA 91773-5121 Attn: Manoucher Sarbaz Golf Investments LLC 9903 Santa Monica Blvd., #541 Beverly Hills, CA 90212-1606

Daggett, CA 92327-0337

Attn: Scot Gasper

Gordon Acres Water Company

P. O. Box 1035

Lucerne Valley, CA 92356-1035

Gray, George F. and Betty E.

975 Bryant

Calimesa, CA 92320-1301

Attn: Brian E. Bolin Green Acres Estates P. O. Box 29

Apple Valley, CA 92307-0001

Attn: Eric Archibek Green Hay Packers LLC 41717 Silver Valley Road

Newberry Springs, CA 92365-9517

Attn: Nick Grill (Nick.terawatt@gmail.com) Grill, Nicholas P. and Millie D. (via email)

35350 Mountain View Rd Hinkley, CA 92347-9613

Gubler, Hans P. O. Box 3100 Landers, CA 92285

Attn: Tamara Gulbranson (TamaraMcKenzie@aol.com) Gulbranson, Merlin (via email)

511 Minnesota Ave W Gilbert, MN 55741Gutierrez, Jose and Gloria

24116 Santa Fe Hinkley, CA 92347 Attn: Bryan C. Haas and Mary H. Hinkle

(resrvc4you@aol.com)

Haas, Bryan C. and Hinkle, Mary H. (via

14730 Tigertail Road

Apple Valley, CA 92307-5249

Attn: Edward E. Hackbarth (hackbarthoffice@gmail.com) Hackbarth, Edward E. (via email) 13312 Ranchero Rd STE 241

Oak Hills, CA 92344-4812

Attn: Doug and Cheryl Hamilton Hamilton Family Trust 19945 Round Up Way Apple Valley, CA 92308-8338

(hammackhay@gmail.com) Hammack, Mitchell (via email) 34650 Minneola Road

Newberry Springs, CA 92365-9146

Attn: William Handrinos Handrinos, Nicole A. 1140 Parkdale Rd.

Adelanto, CA 92301-9308

Hang, Phu Quang 645 S. Shasta Street West Covina, CA 91791-2818

Attn: Donald F. Hanify

Hanify, Michael D., dba - White Bear Ranch

PO BOX 1021

Yermo, CA 92398-1021

Attn: Matt Wood

(Matthew.wood@martinmarietta.com) Hanson Aggregates WRP, Inc. (via email)

P.O. Box 1115

Corona, CA 92878-1115

Attn: Mary Jane Hareson Hareson, Nicholas and Mary 1737 Anza Avenue Vista, CA 92084-3236

Attn: Kenny Harmsen (harmsencow@aol.com)

Harmsen Family Trust (via email) 23920 Community Blvd.

10902 Swan Lake Road

Klamath Falls, OR 97603-9676

Harter, Joe and Sue

(harveyl.92356@gmail.com) Harvey, Lisa M. (via email)

P. O. Box 1187

Lucerne Valley, CA 92356-

Haskins, James J. 11352 Hesperia Road, #2 Hesperia, CA 92345-2165

Hinkley, CA 92347-9721

Hass, Pauline L. P. O. Box 273

Newberry Springs, CA 92365-

Attn: Craig Carlson (kcox@helendalecsd.org;

ccarlson@helendalecsd.org)

Helendale Community Services District (via

email)

P. O. Box 359

Helendale, CA 92342-0359

Attn: Joshua Maze Helendale School District

P. O. Box 249

Helendale, CA 92342-0249

Attn: Jeff Gallistel Hendley, Rick and Barbara

P. O. Box 972

Yermo, CA 92398-0972

Hensley, Mark P.

35523 Mountain View Rd

Hinkley, CA 92347-9613

Attn: Jeremy McDonald (jmcdonald@cityofhesperia.us)

Hesperia - Golf Course, City of (via email)

9700 Seventh Avenue Hesperia, CA 92345-3493

Attn: Janie Martines (janiemartines@gmail.com) Hesperia Venture I, LLC (via email)

10 Western Road

Wheatland, WY 82201-8936

Attn: Jeremy McDonald (jmcdonald@cityofhesperia.us) Hesperia Water District (via email)

9700 7th Avenue

Hesperia, CA 92345-3493

Attn: Jeremy McDonald (tsouza@cityofhesperia.us) Hesperia, City of (via email) 9700 Seventh Avenue Hesperia, CA 92345-3493

Attn: Carabeth Carter ()

Hettinga Revocable Trust (via email)

P. O. Box 455

Ehrenberg, AZ 85334-0455

Attn: Lisset Sardeson

Hi Desert Mutual Water Company

23667 Gazana Street Barstow, CA 92311

17671 Bear Valley Rd

Hesperia, CA 92345-4902

(leehiett@hotmail.com) Hiett, Harry L. (via email)

P. O. Box 272

Daggett, CA 92327-0272

Attn: Robert W. Bowcock High Desert Associates, Inc. 405 North Indian Hill Blvd. Claremont, CA 91711-4614

Attn: Gregory Hilarides

Hilarides 1998 Revocable Family Trust

35070 Newberry Road

Newberry Springs, CA 92365

Attn: Katherine Hill (Khill9@comcast.net)

Attn: Lori Clifton (lclifton@robar.com)

Hi-Grade Materials Company (via email)

84 Dewey Street Ashland, OR 97520-

Attn: Lori Clifton (lclifton@robar.com) Hi-Grade Materials Company (via email)

17671 Bear Valley Road Hesperia, CA 92345-4902

Ho, Ting-Seng and Ah-Git

P.O. Box 20001

Bakersfield, CA 93390-0001

Hill Family Trust and Hill's Ranch, Inc. (via

Attn: Anne Roark Hitchin Lucerne, Inc. PO Box 749

Lucerne Valley, CA 92356-0749

Attn: Joan Rohrer

Hollister, Robert H. and Ruth M.

22832 Buendia

Mission Viejo, CA 92691-

Holway, Jeffrey R 1401 Wewatta St. #1105 Denver, CO 80202-1348

Attn: Weiya Noble Holy Heavenly Lake, LLC 10111 Choiceana Avenue Hesperia, CA 92345-5361

Attn: Paul Hong Hong, Paul B. and May P. O. Box #1432 Covina, CA 91722-0432

Attn: Sandra D. Hood Hood Family Trust 2142 W Paseo Del Mar San Pedro, CA 90732-4557

Attn: Barry Horton Horton Family Trust 47716 Fairview Road

Newberry Springs, CA 92365-9258

Attn: Ester Hubbard

Hubbard, Ester and Mizuno, Arlean

47722 Kiloran St.

Newberry Springs, CA 92365-9529

Attn: Paul Johnson Huerta, Hector 25684 Community Blvd

Barstow, CA 92311-

(hconnie630@gmail.com) Hunt, Connie (via email) 39392 Burnside Loop Astoria, OR 97103-8248

Attn: Ralph Hunt

Hunt, Ralph M. and Pennuy Sue

P. O. Box 603

Yermo, CA 92398-0603

Attn: Brenda Hyatt (calivolunteer@verizon.net) Hyatt, James and Brenda (via email) 31726 Fremont Road

Newberry Springs, CA 92365

Irvin, Bertrand W. 3224 West 111th Street Inglewood, CA 90303-

Attn: Audrey Goller (audrey.goller@newportpacific.com) Jamboree Housing Corporation (via email) 15940 Stoddard Wells Rd - Office Victorville, CA 92395-2800

Attn: Cynthia Mahoney (cyndisue87@yahoo.com)

Johnson, Carlean F. Trust Dated 10/29/2004 (via email)

(via emaii)

8626 Deep Creek Road Apple Valley, CA 92308-8769

Attn: Lawrence W. Johnston Johnston, Harriet and Johnston, Lawrence W. P. O. Box 401472 Hesperia, CA 92340-1472

Attn: Ray Gagné Jubilee Mutual Water Company P. O. Box 1016

Attn: Ash Karimi Karimi, Hooshang 1254 Holmby Ave

Los Angeles, CA 90024-

Lucerne Valley, CA 92356

(Robertkasner@aol.com) Kasner, Robert (via email) 11584 East End Avenue

Chino, CA 91710-1555

Attn: Peggy Shaughnessy Kemper Campbell Ranch 10 Kemper Campbell Ranch Road - Office Victorville, CA 92395-3357

(juskim67@yahoo.com) Kim, Ju Sang (via email) 1225 Crestview Dr Fullerton, CA 92833-2206

Attn: Catherine Cerri (ccerri@lakearrowheadcsd.com) Lake Arrowhead Community Services District (via email) P. O. Box 700 Lake Arrowhead, CA 92352-0700 Attn: James Jackson Jr.
Jackson, James N. Jr Revocable Living Trust
1245 S. Arlington Avenue
Los Angeles, CA 90019-3517

Attn: Tomas Janovsky (tomjanovsky@yahoo.com) Janovsky Revocable Trust No. 1 (via email) 17241 Bullock Street Encino, CA 91316-1437

Attn: Paul Johnson (johnsonfarming@gmail.com) Johnson, Paul - Industrial (via email) 10456 Deep Creek Road Apple Valley, CA 92308-8330

Attn: Magdalena Jones (mygoldenbiz9@gmail.com) Jones Trust dated March 16, 2002 (via email) 35424 Old Woman Springs Road Lucerne Valley, CA 92356-7237

Attn: Jilin Xiao Jujube Valley Farm, Inc. 19 Pemberly Irvine, CA 92603-3452

Attn: Mitch Hammock (Robertkasner@aol.com) Kasner Family Limited Partnership (via email) 11584 East End Avenue Chino, CA 91710-

Attn: Martin A and Mercedes Katcher Katcher, August M. and Marceline 12928 Hyperion Lane Apple Valley, CA 92308-4565

Kim, Jin S. and Hyun H. 419 Sara Jane Ln Placentia, CA 92870-5137

Kim, Seon Ja 34981 Piute Road Newberry Springs, CA 92365-9548 email)
P.O. Box 8250
Redlands, CA 92375-1450

Attn: Gary A. Ledford

Attn: Lawrence Dean (ldean28296@aol.com)

Jackson, Ray Revocable Trust No. 45801 (via

Attn: Gary A. Ledford (gleddream@gmail.com) Jess Ranch Water Company (via email) 906 Old Ranch Road Florissant, CO 80816-

Johnson, Ronald 1156 Clovis Circle Dammeron Valley, UT 84783-5211

Attn: Paul Jordan Jordan Family Trust 1650 Silver Saddle Drive Barstow, CA 92311-2057

Attn: Cherie Casey (ccasey@jrcwd.org)
Juniper Riviera County Water District (via email)
P.O. Box 618

Lucerne Valley, CA 92356-0618

Attn: Robert R. Kasner (Robertkasner@aol.com) Kasner Family Limited Partnership (via email)

11584 East End Avenue Chino, CA 91710-

Kemp, Robert and Rose 48441 National Trails Highway Newberry Springs, CA 92365

Attn: Alan and Annette De Jong

Kim, Joon Ho and Mal Boon Revocable Trust

46561 Fairview Road

Newberry Springs, CA 92365-9230

Attn: Richard Koering

Koering, Richard and Koering, Donna 40909 Mountain View Road Newberry Springs, CA 92365-9414

Attn: Claire Cabrey (HandleWithClaire@aol.com;

mike@jaynes.net)

Lake Jodie Property Owners Association (via

email)

8581 Santa Monica Blvd., #18 West Hollywood, CA 90069-4120 Attn: Nancy Lan Lake Waikiki 230 Hillcrest Drive La Puente, CA 91744-4816

Attn: Timothy Rohm (ljm9252@aol.com; timrohmbuilding@gmail.com) Lake Wainani Owners Association (via email)

2812 Walnut Avenue, Suite A Tustin, CA 92780-7053

(PhillipLam99@Yahoo.com) Lam, Phillip (via email) 864 Sapphire Court Pomona, CA 91766-5171

(jlangley@kurschgroup.com) Langley, James (via email) 12277 Apple Valley Road, Ste. #120 Apple Valley, CA 92308-1701

Attn: Vanessa Laosy Lavanh, et al. 18203 Yucca St. Hesperia, CA 92345-

Attn: Robert Lawrence Jr. Lawrence, William W.

P. O. Box 98

Newberry Springs, CA 92365

Lawson, Ernest and Barbara 20277 Rock Springs Road Apple Valley, CA 92308-8740 Attn: Anna K. Lee (kimyung830@gmail.com; aklee219@gmail.com)

Lee, Anna K. and Eshban K. (via email)

10979 Satsuma St

Loma Linda, CA 92354-6113

Lee, Doo Hwan P. O. Box 556

Lucerne Valley, CA 92356-0556

Attn: Sepoong & Woo Poong Lee Lee, et al., Sepoong and Woo Poong

#6 Ensueno East Irvine, CA 92620Lee, Vin Jang T. 42727 Holcomb Trl

Newberry Springs, CA 92365

Lenhert, Ronald and Toni 4474 W. Cheyenne Drive

Eloy, AZ 85131-3410

Attn: Brad Francke LHC Alligator, LLC P. O. Box 670

Upland, CA 91785-0670

Attn: Billy Liang

Liang, Yuan - I and Tzu - Mei Chen

4192 Biscayne St Chino, CA 91710-3196

Attn: Michael Reese

(Michael.Reese@libertyutilities.com) Liberty Utilities (Apple Valley Ranchos

Water) Corp. (via email)

P.O. Box 7005

Apple Valley, CA 92307

Attn: James Lin

Lin, Kuan Jung and Chung, Der-Bing

2026 Turnball Canyon Hacienda Heights, CA 91745Attn: Manshan Gan

Lo, et al.

5535 N Muscatel Ave San Gabriel, CA 91776-1724

Attn: Robert Fimbres (rfimbres@terra-

gen.com)

Lockhart Land Holding, LLC (via email)

43880 Harper Lake Road Hinkley, CA 92347Attn: Patricia Miranda Lopez, Baltazar 12318 Post Office Rd

Lucerne Valley, CA 92356-

Attn: Dean Low (lowgo.dean@gmail.com)

Lucerne Valley Mutual Water Company

Low, Dean (via email) 3 Panther Creek Ct. Henderson, NV 89052-

Lua, Michael T. and Donna S. 18838 Aldridge Place

Rowland Heights, CA 91748-4890

Attn: Parviz Omidvar (pomidvar@roadrunner.com) Lucerne Valley 26, LLC (via email) 8383 Wilshire Blvd., Suite 943

Beverly Hills, CA 90211-2411

P. O. Box 1311

Attn: Gwen L. Bedics

Lucerne Valley, CA 92356

Attn: Manoucher Sarbaz Lucerne Valley Partners

9903 Santa Monica Blvd., PMB #541 Beverly Hills, CA 90212-1671

Attn: Sherri Brown

Lucerne Vista Mutual Water Company

P. O. Box 677

Lucerne Valley, CA 92356-0677

Attn: Eugene R. & Vickie R. Bird

M Bird Construction 1613 State Street, Ste. 10 Barstow, CA 92311-4162

Attn: Maria Martinez

M.B. Landscaping and Nursery, Inc.

6831 Lime Avenue

Long Beach, CA 90805-1423

Attn: Robert Saidi Mahjoubi, Afsar S. 46622 Fairview Road Newberry Springs, CA 92365 Manning, Sharon S. 19332 Balan Road

Rowland Heights, CA 91748-4017

Attn: Allen Marcroft Marcroft, James A. and Joan

P. O. Box 519

Newberry Springs, CA 92365

Attn: Matt Bachman

(gm@marianaranchoscwd.org;gm@mrcwd.org

; gmmrcwd@gmail.com)

Mariana Ranchos County Water District (via

email)

9600 Manzanita Street

Apple Valley, CA 92308-8605

Markley, Carmen and Price, Aric PO Box 1407 Barstow, CA 92312-1407

Marshall, Charles 32455 Lakeview Road

Newberry Springs, CA 92365-9482

Martin, Michael D. and Arlene D. 32942 Paseo Mira Flores

San Juan Capistrano, CA 92675

Attn: Rod Sexton McCollum, Charles L. 15074 Spruce St Hesperia, CA 92345-2950

McKinney, Paula 144 East 72nd

Tacoma, WA 98404-1060

Attn: Olivia L. Mead Mead Family Trust 31314 Clay River Road Barstow, CA 92311-2057

Minn15 LLC (via email)

La Mesa, CA 91942-3035

Attn: David I. Milbrat Milbrat, Irving H. P. O. Box 487

Newberry Springs, CA 92365-0487

Attn: Donna Miller Miller Living Trust 6124 Parsonage Circle Milton, FL 32570-8930

Attn: Philip Mizrahie Mizrahie, et al. 4105 W. Jefferson Blvd.

Los Angeles, CA 90016-4124

Attn: Thomas A. Hrubik (tahgolf@aol.com)

Attn: Freddy Garmo (freddy@garmolaw.com)

5464 Grossmont Center Drive, #300

MLH, LLC (via email) P. O. Box 2611

Apple Valley, CA 92307-0049

Attn: Erik Gruber

(erik.gruber@mitsubishicement.com) Mitsubishi Cement Corporation (via email)

Attn: Janie Thai (mlkj8888llc@gmail.com)

5808 State Highway 18

Lucerne Valley, CA 92356-8179

Attn: Sarah Bliss Mojave Desert Land Trust 60124 29 Palms Highway Joshua Tree, CA 92252-4130

Attn: Doug Kerns (aanabtawi@mojavewater.org) Mojave Water Agency (via email)

13846 Conference Center Drive Apple Valley, CA 92307-4377

Attn: Ken Elliot (Billie@ElliotsPlace.com) Morris Trust, Julia V. (via email)

7649 Cypress Dr. Lanexa, VA 23089-9320

MLKJ8888 LLC (via email)

300 W Valley Blvd, #1933 Alhambra, CA 91803-3333

Attn: Mahnaz Ghamati (mahnaz.ghamati@atlantica.com)Mojave Solar, LLC (via email) 42134 Harper Lake Road Hinkley, CA 92347-9305

Attn: Doug Kerns

(tmccarthy@mojavewater.org) Mojave Water Agency (via email) 13846 Conference Center Drive

Attn: Doug Kerns (dkerns@mojavewater.org) Mojave Water Agency (via email)

13846 Conference Center Drive Apple Valley, CA 92307-4377

Apple Valley, CA 92307-4377

Moss, Lawrence W. and Helen J. 38338 Old Woman Springs Road Spc# 56 Lucerne Valley, CA 92356-8116

Attn: Manoucher Sarbaz Monaco Investment Company 9903 Santa Monica Blvd., PMB #541 Beverly Hills, CA 90212-1671

Attn: Bradford Ray Most Most Family Trust 39 Sundance Circle Durango, CO 81303-8131

Attn: Dennis Hills Mulligan, Robert and Inez 35575 Jakobi Street Saint Helens, OR 97051-1194 Murphy, Jean 46126 Old National Trails Highway Newberry Springs, CA 92365-9025

(z.music5909@gmail.com; zajomusic@gmail.com) Music, Zajo (via email) 43830 Cottonwood Rd

Newberry Springs, CA 92365-8510

Attn: James Hansen (gm@marianaranchoscwd.org)

Navajo Mutual Water Company (via email)

21724 Hercules St.

Apple Valley, CA 92308-8490

Attn: Jeff Gaastra (jeffgaastra@gmail.com) Newberry Springs Recreational Lakes

Association (via email) 32935 Dune Road, Space 10 Newberry Springs, CA 92365-

Nuñez, Luis Segundo 9154 Golden Seal Court Hesperia, CA 92345-0197

Attn: Chun Soo Ahn (chunsooahn@naver.com) Oasis World Mission (via email)

P. O. Box 45

Apple Valley, CA 92307-0001

Attn: John P. Oostdam

Oostdam Family Trust, John P. and Margie K.

24953 Three Springs Road Hemet, CA 92545-2246

Attn: Jessica Balders (J4Dx@pge.com)
Pacific Gas and Electric Company (via email)

22999 Community Blvd Hinkley, CA 92347-9592

(wndrvr@aol.com)

Paustell, Joan Beinschroth (via email)

10275 Mockingbird Ave. Apple Valley, CA 92308-8303

Pettigrew, Dan 285 N Old Hill Road Fallbrook, CA 92028-2571

Porter, Timothy M. 34673 Little Dirt Road

Newberry Springs, CA 92365-9646

(s_quakenbush@yahoo.com)
Quakenbush, Samuel R. (via email)

236 Iris Drive

Martinsburg, WV 25404-1338

Attn: Billy Liang (flossdaily@hotmail.com;

asaliking@yahoo.com)

New Springs Limited Partnership (via email)

4192 Biscayne St. Chino, CA 91710-3196

Attn: Mary Ann Norris Norris Trust, Mary Ann 29611 Exeter Street

Lucerne Valley, CA 92356-8261

Attn: Pearl or Gail Nunn Nunn Family Trust P. O. Box 2651

Apple Valley, CA 92307-0010

Attn: Dorothy Ohai Ohai, Reynolds and Dorothy 13450 Monte Vista

Chino, CA 91710-5149

Attn: Nick Higgs

Oro Grande School District

P. O. Box 386

Oro Grande, CA 92368-0386

Pak, Kae Soo and Myong Hui Kang

P. O. Box 1835

Lucerne Valley, CA 92356-1835

Pearce, Craig L. 127 Columbus Dr

Punxsutawney, PA 15767-1270

Attn: Sean Wright (swright@pphcsd.org; dbartz@pphcsd.org; llowrance@pphcsd.org) Phelan Piñon Hills Community Services

District (via email) 4176 Warbler Road Phelan, CA 92371-8819

Attn: Carin McKay

Precision Investments Services, LLC

791 Price Street, #160 Pismo Beach, CA 93449-2529

Attn: Ron Herrmann

Quiros, Fransisco J. and Herrmann, Ronald

35969 Newberry Rd

Newberry Springs, CA 92365-9438

Attn: Jodi Howard

Newberry Community Services District

P. O. Box 220

Newberry Springs, CA 92365-0220

Attn: Kenton Eatherton (keatherton@verizon.net) NSSLC, Inc. (via email) 9876 Moon River Circle

Fountain Valley, CA 92708-7312

Attn: Jeff Gaastra (jeffgaastra@gmail.com;

andy@seesmachine.com; bbswift4044@cox.net) O. F. D. L., Inc. (via email) 32935 Dune Road, #10

Newberry Springs, CA 92365-9175

Attn: Craig Maetzold (craig.maetzold@omya.com) Omya California, Inc. (via email)

7225 Crystal Creek Rd

Lucerne Valley, CA 92356-8646

Attn: Taghi Shoraka

P and H Engineering and Development

Corporation

1423 South Beverly Glen Blvd. Apt. A

Los Angeles, CA 90024-6171

Patino, José

3914 W. 105th Street Inglewood, CA 90303-1815

Perko, Bert K. P. O. Box 762

Yermo, CA 92398-0762

Attn: John Poland

Poland, John R. and Kathleen A.

778 23rd St SW

Loveland, CO 80537-7200

Pruett, Andrea P. O. Box 37

Newberry Springs, CA 92365

Attn: Elizabeth Murena

(waterboy7F8@msn.com; etminav@aol.com)

Rancheritos Mutual Water Company (via

email)

P. O. Box 348

Apple Valley, CA 92307

Attn: Michael A. Reed Reed, Mike 105 R C Smith Lane

Barbourville, KY 40906-7119

Attn: Kelly Rice Rice, Henry C. and Diana 31823 Fort Cady Rd. Newberry Springs, CA 92365-

(RayRizvi@Yahoo.com) Rizvi, S.R Ali (via email) 4054 Allyson Terrace Freemont, CA 94538-4186

Attn: Susan Sommers (sommerssqz@aol.com)
Rossi Family Trust, James Lawrence Rossi
and Naomi (via email)
P. O. Box 120
Templeton, CA 93465-0120

Attn: Dale W. Ruisch Ruisch Trust, Dale W. and Nellie H. 10807 Green Valley Road Apple Valley, CA 92308-3690

Attn: Kanoe Barker (kanoebarker@yahoo.com) Sagabean-Barker, Kanoeolokelani L. (via email) 42224 Valley Center Rd

42224 Valley Center Rd Newberry Springs, CA 92365

Attn: Jared Beyeler (waterquality@sdd.sbcounty.gov) San Bernardino County - High Desert Detention Center (via email) 222 W. Hospitality Lane, 2nd Floor - SDW San Bernardino, CA 92415-0415

Attn: Jared Beyeler (ssamaras@sdd.sbcounty.gov; jbeyeler@sdd.sbcounty.gov; waterquality@sdd.sbcounty.gov) San Bernardino County Service Area 64 (via email)

222 W. Hospitality Lane, 2nd Floor - SDW San Bernardino, CA 92415-0450

Attn: Rod Sexton Sexton, Rodney A. and Sexton, Derek R. P.O. Box 155 Rim Forest, CA 92378Attn: Brian C. Vail (bvail@river-west.com) Reido Farms, LLC (via email) 2410 Fair Oaks Blvd., Suite 110 Sacramento, CA 95825-7666

Attn: Josie Rios Rios, Mariano V. P. O. Box 1864 Barstow, CA 92312-1864

Attn: Jackie McEvoy (jackiem@rrmca.com) Robertson's Ready Mix (via email) P.O. Box 3600 Corona, CA 92878-3600

Attn: Robert Vega Royal Way 2632 Wilshire Blvd., #480 Santa Monica, CA 90403-4623

Attn: Taghi Shoraka S and B Brothers, LLC 1423 S. Beverly Glen Blvd., Ste. A Los Angeles, CA 90024-6171

(BILLU711@Yahoo.com) Samra, Jagtar S. (via email) 10415 Edgebrook Way Northridge, CA 91326-3952

Attn: Jared Beyeler (jared.beyeler@sdd.sbcounty.gov; waterquality@sdd.sbcounty.gov) San Bernardino County Service Area 29 (via email)

222 W. Hospitality Lane, 2nd Floor (Spec San Bernardino, CA 92415-0450

Attn: Jared Beyeler (jared.bayeler@sdd.sbcounty.gov; ssamaras@sdd.sbcounty.gov; waterquality@sdd.sbcounty.gov) San Bernardino County Service Area 70J (via email)

222 W. Hospitality Lane, 2nd Floor - SDW San Bernardino, CA 92415-0450

Attn: Joseph Tapia Sheep Creek Water Company P. O. Box 291820 Phelan, CA 92329-1820 (LucerneJujubeFarm@hotmail.com) Rhee, Andrew N. (via email) 11717 Fairlane Rd, #989 Lucerne Valley, CA 92356-8829

Rivero, Fidel V. 612 Wellesley Drive Corona, CA 92879-0825

Attn: Jackie McEvoy (jackiem@rrmca.com) Robertson's Ready Mix (via email) PO Box 3600

PO BOX 3000

Corona, CA 92878-3600

Attn: Sam Marich
Rue Ranch, Inc.
42704 Edelweiss Drive
Ric Room Leke, CA 02215 20

Big Bear Lake, CA 92315-2074

Attn: Jafar Rashid (jr123realestate@gmail.com)

S and E 786 Enterprises, LLC (via email)

3300 S. La Cienega Blvd. Los Angeles, CA 90016-3115

San Bernardino Co Barstow - Daggett Airport 268 W. Hospitality Lane, Suite 302 San Bernardino, CA 92415-0831

Attn: Jared Beyeler (jbeyeler@sdd.sbcounty.gov; waterquality@sdd.sbcounty.gov) San Bernardino County Service Area 42 (via

222 W. Hospitality Lane, 2nd Floor - SDW San Bernardino, CA 92415-0450

Attn: Michelle Scray (mcscray@gmail.com) Scray, Michelle A. Trust (via email) 16869 State Highway 173 Hesperia, CA 92345-9381

Sheng, Jen 5349 S Sir Richard Dr Las Vegas, NV 89110-0100

Attn: Dan Sheppard (gloriasheppard14@gmail.com) Sheppard, Thomas and Gloria (via email)

11806 Preston St.

Grand Terrace, CA 92313-5231

Short, Jerome E. P. O. Box 1104 Barstow, CA 92312-1104

Attn: Carlos Banuelos (cbanuelos@silverlakesassociation.com) Silver Lakes Association (via email) P. O. Box 179

Helendale, CA 92342-0179

Attn: Nepal Singh (NepalSingh@yahoo.com)

Singh, et al. (via email) 4972 Yearling Avenue Irvine, CA 92604-2956 Attn: Denise Smith (ddgogo72@yahoo.com) Smith, Denise dba Amerequine Beauty, Inc

(via email)

13313 Newmire Ave. Norwalk, CA 90650-2168 Smith, Porter and Anita 8443 Torrell Way

San Diego, CA 92126-1254

Attn: Steve Kim (stevekim1026@gmail.com) Snowball Development, Inc. (via email)

P. O. Box 2926

Victorville, CA 92393-2926

Attn: Chan Kyun Son Son's Ranch P. O. Box 1767

Lucerne Valley, CA 92356

Attn: Christopher Quach (Christopher.Quach@sce.com)

Southern California Edison Company (via

2244 Walnut Grove Ave Rosemead, CA 91770-

Attn: Jose Garcia

(jose.garcia@mineralstech.com) Specialty Minerals, Inc. (via email)

P. O. Box 558

Lucerne Valley, CA 92356-0558

Sperry, Wesley P.O. Box 303

Newberry Springs, CA 92365-0303

Spillman, James R. and Nancy J.

12132 Wilshire

Lucerne Valley, CA 92356-8834

Attn: Eric Miller (emiller@svla.com;

alogan@svla.com;)

Spring Valley Lake Association (via email)

SVL Box 7001

Victorville, CA 92395-5107

Attn: Joe Trombino

Spring Valley Lake Country Club

7070 SVL Box

Storm, Randall

51432 130th Street

Victorville, CA 92395-5152

Attn: Father Sarapamon

St. Antony Coptic Orthodox Monastery

P. O. Box 100

Barstow, CA 92311-0100

(chiefgs@verizon.net)

Starke, George A. and Jayne E. (via email)

8743 Vivero Street

Rancho Cucamonga, CA 91730-1152

Byars, OK 74831-7357

Sudmeier, Glenn W. 14253 Highway 138 Hesperia, CA 92345-9422

Attn: Alexandra Lioanag (sandra@halannagroup.com)

Summit Valley Ranch, LLC (via email) 220 Montgomery Street, Suite PH-10 San Francisco, CA 94104-3433

Attn: Alex Vienna (alexviennarn@gmail.com;

sundownmark@gmail.com) Sundown Lakes, Inc. (via email)

P.O. Box 364

Newberry Springs, CA 92365-

Attn: Stephen H. Douglas (sdouglas@centaurusenergy.com; mdoublesin@centcap.net; cre.notices@clenera.com)

Sunray Land Company, LLC (via email) 1717 West Loop South, Suite 1800

Houston, TX 77027-3049

Attn: Venny Vasquez (lbaroldi@synagro.com) Synagro-WWT, Inc. (dba Nursury Products,

LLC) (via email) P. O. Box 1439 Helendale, CA 92342Attn: Russell Szynkowski Szynkowski, Ruth J. 46750 Riverside Rd.

Newberry Springs, CA 92365-9738

Attn: Bill and Elizabeth Tallakson (billtallakson@sbcglobal.net)

Tallakson Family Revocable Trust (via email)

11100 Alto Drive

Oak View, CA 93022-9535

Tapie, Raymond L. 73270 Desert Greens Dr N Palm Desert, CA 92260-1206 Taylor, Sharon L. 14141 State Hwy 138 Hesperia, CA 92345-9339

(jerryteisan@gmail.com) Teisan, Jerry (via email) P. O. Box 2089

Befair, WA 98528-2089

Attn: John Henry Tellez (JohnnyMelissaTellez@gmail.com) Tellez, et al. (via email) 43774 Cottonwood Road

Newberry Springs, CA 92365-9277

Attn: Lynnette L. Thompson

Thompson Living Trust, James A. and Sula B. 22815 Del Oro Road

Apple Valley, CA 92308

Attn: Doug Heinrichs (gm@thunderbirdcwd.org; office@thunderbirdcwd.org)

Thunderbird County Water District (via email)

P. O. Box 1105

Apple Valley, CA 92307-1105

Turner, Terry PO Box 881

Peach Springs, AZ 86434-0881

(gagevaage23@gmail.com) Vaage, Gage V. (via email) 47150 Black Butte Road

Newberry Springs, CA 92365-9698

Attn: Glen and Jennifer Van Dam (gvandam@verizon.net)

Van Dam Family Trust, Glen and Jennifer (via

email)

3190 Cottonwood Avenue San Jacinto, CA 92582-4741

Attn: Estela Wansten

Victor Valley Community College District 18422 Bear Valley Road, Bldg 10

Victorville, CA 92395-5850

Attn: Arnold Villarreal (avillarreal@victorvilleca.gov; kmetzler@victorvilleca.gov; snawaz@victorvilleca.gov)

Victorville Water District, ID#1 (via email)

P.O. Box 5001

Victorville, CA 92393-5001

Attn: Joan Wagner Wagner Living Trust 22530 Calvert Street

Woodland Hills, CA 91367-1704

Attn: Daryl or Lucinda Lazenby

Thayer, Sharon P. O. Box 845

Lucerne Valley, CA 92356-

Attn: Rodger Thompson

Thompson Living Trust, R.L. and R.A.

9141 Deep Creek Road Apple Valley, CA 92308-8351

Attn: Jim Hoover Triple H Partnership 35870 Fir Ave

Yucaipa, CA 92399-9635

Attn: Aurelio Ibarra (aibarra@up.com;

powen@up.com)

Union Pacific Railroad Company (via email)

HC1 Box 33 Kelso, CA 92309-

Vaca, Andy and Teresita S. 5550 Avenue Juan Bautista Riverside, CA 92509-5613

Attn: Jacob Bootsma

Van Leeuwen Trust, John A. and Ietie

44128 Silver Valley Road

Newberry Springs, CA 92365-9588

Attn: Jade Kiphen

Victor Valley Memorial Park

17150 C Street

Victorville, CA 92395-3330

Attn: Arnold Villarreal (sashton@victorvilleca.gov; avillarreal@victorvilleca.gov; dmathews@victorvilleca.gov)

Victorville Water District, ID#2 (via email)

PO Box 5001

11741 Ardis Drive

Victorville, CA 92393-5001

Attn: Christian Joseph Wakula Wakula Family Trust

Garden Grove, CA 92841-2423

Attn: Stephen Thomas Thomas, Stephen and Lori 4890 Topanga Canyon Bl. Woodland Hills, CA 91364-4229

Thrasher, Gary 14024 Sunflower Lane Oro Grande, CA 92368-9617

Attn: Mike Troeger (mjtroeger@yahoo.com) Troeger Family Trust, Richard H. (via email)

P. O. Box 24

Wrightwood, CA 92397

(druppal@aicdent.com) Uppal, Gagan (via email) 220 S Owens Drive

Anaheim, CA 92808-1327

Attn: Dean Van Bastelaar Van Bastelaar, Alphonse 45475 Martin Road

Newberry Springs, CA 92365-9625

Attn: John Driscoll

Vernola Trust, Pat and Mary Ann

P. O. Box 2190

Temecula, CA 92593-2190

Attn: Arnold Villarreal (avillarreal@victorvilleca.gov; ccun@victorvilleca.gov)

Victorville Water District, ID#1 (via email)

P. O. Box 5001

Victorville, CA 92393-5001

Vogler, Albert H. 17612 Danbury Ave. Hesperia, CA 92345-7073

(Jlow3367@gmail.com) Wang, Steven (via email) 2551 Paljay Avenue Rosemead, CA 91770-3204

Ward, Raymond P. O. Box 358

West, Jimmie E.

P. O. Box 98

Newberry Springs, CA 92365-0358

Attn: Alicia Weems Weems, Lizzie 4418 Stephanie Park Ln Conroe, TX 77304-2990 Weeraisinghe, Maithri N. P. O. Box 487 Barstow, CA 92312-0487

West, Howard and Suzy

9185 Loma Vista Road

(andrewwerner11@gmail.com) Werner, Andrew J. (via email) 1718 N Sierra Bonita Ave

Los Angeles, CA 90046-2231

Attn: Jessica Zavella Westland Industries, Inc. 22838 Bear Valley Road Apple Valley, CA 92308-

Oro Grande, CA 92368-0098

Attn: Manoucher Sarbaz Wilshire Road Partners 9903 Santa Monica Blvd., PMB #541 Beverly Hills, CA 90212-1671

Attn: Geoffrey Schmid WLSR, Inc. 12678 Cabezon Place San Diego, CA 92129-

Attn: Christine M. Carson, Esq. (ccarson@awattorneys.com) Aleshire & Wynder, LLP (via email) 3880 Lemon Street Suite 520 Riverside, CA 92501-

Attn: Alison Paap (apaap@agloan.com) American AgCredit (via email) 42429 Winchester Road Temecula, CA 92590-2504

Attn: Christopher L. Campbell, Esq. Baker, Manock & Jensen 5260 N. Palm Avenue, 4th Floor Fresno, CA 93704-2209

Attn: Cindy Sacks West End Mutual Water Company P. O. Box 1732 Lucerne Valley, CA 92356

Western Development and Storage, LLC (via email) 5701 Truxtun Avenue, Ste. 201 Bakersfield, CA 93309-0402

Attn: Nick Gatti (ngatti@atlas-water.com)

Attn: Thomas G. Ferruzzo (tferruzzo@ferruzzo.com) Wet Set, Inc. (via email) 44505 Silver Valley Road, Lot #05 Newberry Springs, CA 92365-9565

Attn: Connie Tapie (praisethelord77777@yahoo.com) Withey, Connie (via email) P.O. Box 3513 Victorville, CA 92393-3513

Attn: David A. Worsey Worsey, Joseph A. and Revae P.O. Box 422 Newberry Springs, CA 92365-0422

Attn: Robert Hensley, Esq. (rhensley@awattorneys.com) Aleshire & Wynder, LLP (via email) 3880 Lemon Street Suite 520

Attn: Wesley A. Miliband, Esq. (wes.miliband@mwaterlaw.com) Atkinson, Andelson, Loya, Ruud & Romo (via email) 2151 River Plaza Drive

Suite 300 Sacramento, CA 95833-

Riverside, CA 92501-

Attn: Vanessa Guillen-Becerra (Vanessa.Becerra@bbklaw.com) Best, Best & Krieger LLP (via email) Attn: Chung Cho Gong Western Horizon Associates, Inc. P. O. Box 397

Five Points, CA 93624-0397

Apple Valley, CA 92308-0557

Wiener, Melvin and Mariam S. 1626 N. Wilcox Avenue Los Angeles, CA 90028-6234

Witte, E. Daniel and Marcia 31911 Martino Drive Daggett, CA 92327-9752

(thechelseaco@yahoo.com) Yang, Zilan (via email) 428 S. Atlantic Blvd #205 Monterey Park, CA 91754-3228

Attn: Pam Lee, Esq. (plee@awattorneys.com) Aleshire & Wynder, LLP (via email) 3880 Lemon Street Suite 520 Riverside, CA 92501-

Attn: W.W. Miller, Esq. (bmiller@aalrr.com) Atkinson, Andelson, Loya-Ruud & Romo (via email) 3612 Mission Inn Avenue, Upper Level Riverside, CA 92501

Attn: Christopher Pisano, Esq. (christopher.pisano@bbklaw.com) Best, Best & Krieger LLP (via email)

300 South Grand Avenue 25th Floor Los Angeles, CA 90071

Attn: Aloson Toivola, Esq. (alison.toivola@bbklaw.com) Best, Best & Krieger LLP (via email) 300 South Grand Avenue 25th Floor

Los Angeles, CA 90071

Santa Barbara, CA 93101-2102

Attn: Stephanie Osler Hastings, Esq. (SHastings@bhfs.com; mcarlson@bhfs.com) Brownstein Hyatt Farber Schreck, LLP (via email) 1021 Anacapa Street, 2nd Floor

Attn: Stephen Puccini (stephen.puccini@wildlife.ca.gov) California Department of Fish and Wildlife (via email)

Attn: Jeffery L. Caufield, Esq. (Jeff@caufieldjames.com) Caufield & James, LLP (via email) 2851 Camino Del Rio South, Suite 410 San Diego, CA 92108-

Attn: Maria Insixiengmay (Maria.Insixiengmay@cc.sbcounty.gov)
County of San Bernardino, County Counsel (via email)
385 N. Arrowhead Avenue, 4th Floor
San Bernardino, CA 92415-0140

Attn: Noah GoldenKrasner, Dep (Noah.GoldenKrasner@doj.ca.gov) Department of Justice (via email) 300 S. Spring Street, Suite 1700 Los Angeles, CA 90013

Attn: Diana Carloni, Esq. (diana@carlonilaw.com)
Diana J. Carloni (via email)
21001 N. Tatum Blvd.
Suite 1630-455
Phoenix, AZ 85050-

Attn: Marlene Allen Murray, Esq. (mallenmurray@fennemorelaw.com) Fennemore LLP (via email) 550 East Hospitality Lane Suite 350

San Bernardino, CA 92408-4206

Attn: Thomas G. Ferruzzo, Esq. (tferruzzo@ferruzzo.com)
Ferruzzo & Ferruzzo, LLP (via email)
3737 Birch Street, Suite 400
Newport Beach, CA 92660

Attn: Eric L. Garner, Esq. (eric.garner@bbklaw.com) Best, Best & Krieger LLP (via email) 3750 University Avenue 3rd Floor Riverside, CA 92502-1028

Attn: William J. Brunick, Esq. (bbrunick@bmklawplc.com)
Brunick, McElhaney & Kennedy PLC (via email)
1839 Commercenter West
P.O. Box 13130
San Bernardino, CA 92423-3130

Attn: Alexander Devorkin, Esq. California Department of Transportation 100 South Main Street, Suite 1300 Los Angeles, CA 90012-3702

Attn: Andrew L. Jared, Esq. (ajared@chwlaw.us)
Colantuono, Highsmith & Whatley, PC (via email)
790 E. Colorado Blvd., Suite 850
Pasadena. CA 91101-2109

Attn: Robert E. Dougherty, Esq. Covington & Crowe 1131 West 6th Street Suite 300 Ontario, CA 91762

Attn: Marilyn Levin, Dep Department of Justice 300 S. Spring Street, Suite 1702 Los Angeles, CA 90013

Attn: James S. Heiser, Esq. Ducommun, Inc. 23301 S. Wilmington Avenue Carson, CA 90745

Attn: Kelly Ridenour, Ms. (kridenour@fennemorelaw.com) Fennemore LLP (via email) 550 East Hospitality Lane Suite 350

San Bernardino, CA 92408-4206

Attn: Toby Moore, PhD, PG, CHG (TobyMoore@gswater.com)
Golden State Water Company (via email)
160 W. Via Verde, Suite 100
San Dimas. CA 91773-

Attn: Piero C. Dallarda, Esq. (piero.dallarda@bbklaw.com) Best, Best & Krieger LLP (via email) P.O. Box 1028 Riverside, CA 92502-

Attn: Terry Caldwell, Esq. Caldwell & Kennedy 15476 West Sand Street Victorville, CA 92392

Attn: Nancy McDonough California Farm Bureau Federation 2300 River Plaza Drive Sacramento, CA 95833

Attn: Matthew T. Summers, Esq. (msummers@chwlaw.us)
Colantuono, Highsmith & Whatley, PC (via email)
790 E. Colorado Blvd., Suite 850
Pasadena, CA 91101-2109

Attn: Ed Dygert, Esq. Cox, Castle & Nicholson 3121 Michelson Drive, Ste. 200 Irvine, CA 92612-

Attn: Carol A. Z. Boyd, Dep (Carol.Boyd@doj.ca.gov) Department of Justice (via email) 300 South Spring St. Suite 1702 Los Angeles, CA 90013-

Attn: Michele Hinton, Ms. (mhinton@fennemorelaw.com) Fennemore LLP (via email) 8080 N Palm Ave, Third Floor Fresno, CA 93711-

Attn: Derek Hoffman, Esq. (dhoffman@fennemorelaw.com) Fennemore LLP (via email) 550 East Hospitality Lane Suite 350 San Bernardino, CA 92408-4206

Attn: Andre de Bortnowsky, Esq. (andre@gblawoffices.com)
Green de Bortnowsky, LLP (via email)
30077 Agoura Court, Suite 210
Agoura Hills, CA 91301-2713

Attn: Michelle McCarron, Esq. (mmccarron@gdblawoffices.com; andre@gdblawoffices.com) Green de Bortnowsky, LLP (via email)

30077 Agoura Court, Suite 210 Agoura Hills, CA 91301-2713

Attn: Michael Turner, Esq. (mturner@kasdancdlaw.com)

Kasdan, LippSmith Weber Turner, LLP (via email)

19900 MacArthur Blvd., Suite 850

Irvine, CA 92612-

Attn: Peter J. Kiel, Esq. (pkiel@cawaterlaw.com)

Law Office of Peter Kiel PC (via email)

PO Box 422

Petaluma, CA 94953-0422

Attn: Arthur G. Kidman, Esq. (akidman@kidmanlaw.com)

McCormick, Kidman & Behrens (via email)

8 Corporate Park Suite 300

Irvine, CA 92606-5196

Attn: Frederic A. Fudacz, Esq. (ffudacz@nossaman.com) Nossaman LLP (via email)

777 South Figueroa Street, 34th Floor

Los Angeles, CA 90017-

Attn: Joesfina M. Luna, Esq. (fluna@redwineandsherrill.com) Redwine and Sherrill (via email)

3890 Eleventh Street

Suite 207

Riverside, CA 92501-

Princeton, NJ 08540-

Attn: Henry R. King, Esq. (hking@reedsmith.com) Reed Smith LLP (via email) 506 Carnegie Center, Suite 300

Attn: Randall R. Morrow, Esq. Sempra Energy Law Department Office of the General Counsel 555 West Fifth Street, Suite 1400 Los Angeles, CA 90013-1011

Attn: Rick Ewaniszyk, Esq. The Hegner Law Firm 14350 Civc Drive Suite 270 Victorville, CA 92392

Attn: Calvin R. House, Esq. Gutierrez, Preciado & House 3020 E. Colorado BLVD Pasadena, CA 91107-3840

Attn: Mitchell Kaufman, Esq. (mitch@kmcllp.com) Kaufman McAndrew LLP (via email) 16633 Ventura Blvd., Ste. 500 Encino, CA 91436-1835

Attn: Fred J. Knez, Esq. Law Offices of Fred J. Knez 6780 Indiana Ave, Ste 150 Riverside, CA 92506-4253

Apple Valley, CA 92307

Attn: Jeffrey D Ruesch (watermaster@mojavewater.org) Mojave Basin Area Watermaster (via email) 13846 Conference Center Drive

Attn: Kieth Lemieux (KLemieux@omlolaw.com) Olivarez Madruga Lemieux O'Neill, LLP (via email) 500 South Grand Avenue, 12th Floor Los Angeles, CA 90071-2609

Attn: Steven B. Abbott, Esq. (sabbott@redwineandsherrill.com; fluna@redwineandsherrill.com) Redwine and Sherrill (via email) 3890 Eleventh Street Suite 207 Riverside, CA 92501-

Attn: James L. Markman, Esq. Richards, Watson & Gershon 1 Civic Center Circle P.O. Box 1059 Brea, CA 92822-1059

Attn: Shannon Oldenburg, Esq. (shannon.oldenburg@sce.com) Southern California Edison Company Legal Department (via email) P.O. Box 800

Rosemead, CA 91770

Attn: Agnes Vander Dussen Koetsier (beppeauk@aol.com) Vander Dussen Trust, Agnes & Edward (via email)

P.O. Box 5338 Blue Jay, CA 92317-

Attn: Curtis Ballantyne, Esq. Hill, Farrer & Burrill 300 S. Grand Avenue, 37th Floor 1 California Plaza Los Angeles, CA 90071

Attn: Thomas S. Bunn, Esq. (TomBunn@lagerlof.com) Lagerlof, Senecal, Gosney & Kruse, LLP (via email) 301 N. Lake Avenue, 10th Floor Pasadena, CA 91101-5123

Attn: Robert C. Hawkins, Esq. Law Offices of Robert C. Hawkins 14 Corporate Plaza, Suite 120 Newport, CA 92660

Attn: Adnan Anabtawi (aanabtawi@mojavewater.org) Mojave Water Agency (via email) 13846 Conference Center Drive Apple Valley, CA 92307

Attn: Betsy Brunswick (bmb7@pge.com) Pacific Gas and Electric Company (via email) 77 Beale Street, B28P San Francisco, CA 94105-1814

Attn: Stephanie D. Nguyen, Esq. (snguyen@reedsmith.com) Reed Smith LLP (via email) 1901 Avenue of the Stars, Suite 700 Los Angeles, CA 90076-6078

Attn: Elizabeth Hanna, Esq. Rutan & Tucker P.O. Box 1950 Costa Mesa, CA 92626

Attn: ()

Southern California Gas Company Transmission Environmental Consultant (via email)

Attn: Robert C. Wagner, P.E. (rcwagner@wbecorp.com) Wagner & Bonsignore Consulting Civil Engineers (via email) 2151 River Plaza Drive, Suite 100

Sacramento, CA 95833-4133