

OF THE

SAN BERNARDINO AND
EASTERN SAN GABRIEL MOUNTAINS
CALIFORNIA

U.S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Water Resources Division

Menlo Park, California, 1972

PREPARED IN COOPERATION WITH THE SAN BERNARDING COUNTY FLOOD CONTROL DISTRICT

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Water Resources Division

GENERALIZED STREAMFLOW RELATIONS

OF THE SAN BERNARDINO AND

EASTERN SAN GABRIEL MOUNTAINS

CALIFORNIA

Ву

Mark W. Busby and George T. Hirashima

Prepared in cooperation with the San Bernardino County Flood Control District

OPEN-FILE REPORT

5020-38

Menlo Park, California October 19, 1972

CONTENTS

		Page
Abstract		1
Introduction	DN	1
Deceription	of area	4
Geolog	gy and physiography	4
Climat		4
Preci	oitation and runoff	5
Santa	Ana River basin	9
Method of a	analysis	9
Stroomflow	characteristics	11
Drainage-ba	asin characteristics	13
Reculte		15
Accuracy of	f relations	22
Application	of equations	24
Relation to	o recharge basins	26
Selected re	eferences	27
Appendix A	Sample solutions of equations	29
Appendix B	Basin characteristics for stations used in analysis	37
Appendix C	Flow characteristics computed from regression equations for	
stations	used in analysis	39
Appendix D	Summary of characteristics by station	41
	ILLUSTRATIONS	
		_
		Page
Figure 1.	Map showing study area	. 2
2.	Map showing mean annual precipitation	. 6
3.	Graph of annual precipitation and runoff	. 8
4.	Map showing location of gaging stations	. 12
5.	Map showing two-year 24-hour precipitation	· 16
6.	Map showing average annual lake evaporation	• 18
7.	Graph of accuracy of defined relations	- 23
A1.	Graph showing three-day mean high flow frequency curve for	
	East Twin Creek near Arrowhead Springs, Calif	31
A2.	Graph showing flood-frequency curve for Deer Canyon Creek near	.
	Etiwanda, Calif	. 35

IV

CONTENTS

TABLES

		Page
Table 1.	Distribution of mean monthly precipitation at selected stations	5
2.	Simple correlation matrix of basin characteristics	11
3.	Summary of constant and coefficients for regression equation	20
4.	Values of coefficients for logarithmic solutions of streamflow	
	characteristics	26
A1.	and the state of t	
	Springs, Calif	29
A2.	Basin characteristics for Deer Canyon Creek near Etiwanda,	
	Calif	32

GENERALIZED STREAMFLOW RELATIONS OF THE SAN BERNARDINO AND

EASTERN SAN GABRIEL MOUNTAINS, CALIFORNIA

By Mark W. Busby and George T. Hirashima

ABSTRACT

Generalized relations for surface-water flow characteristics have been developed for the San Bernardino and the eastern San Gabriel Mountains within the Santa Ana River drainage. Flow characteristics were related to various sets of eight basin characteristics by a statistical correlation method. The 26 streamflow characteristics represented high, low, and medium flows--the flows used in most design studies.

The developed relations allow estimation of any of the flow characteristics for any stream site whether gaged or ungaged within the study area. The statistical errors of estimation involved in using the relations are presented to allow evaluation of the estimated flow characteristics.

INTRODUCTION

This report is for that part of the San Bernardino and eastern San Gabriel Mountains drained by the Santa Ana River and its tributaries (fig. 1). It has been prepared to provide generalized relations for surface-water characteristics for use in project planning by the San Bernardino County Flood Control District and by other water agencies operating in the county. This project planning has as its broad objective the conservation, control, and utilization of the water resources of the county.

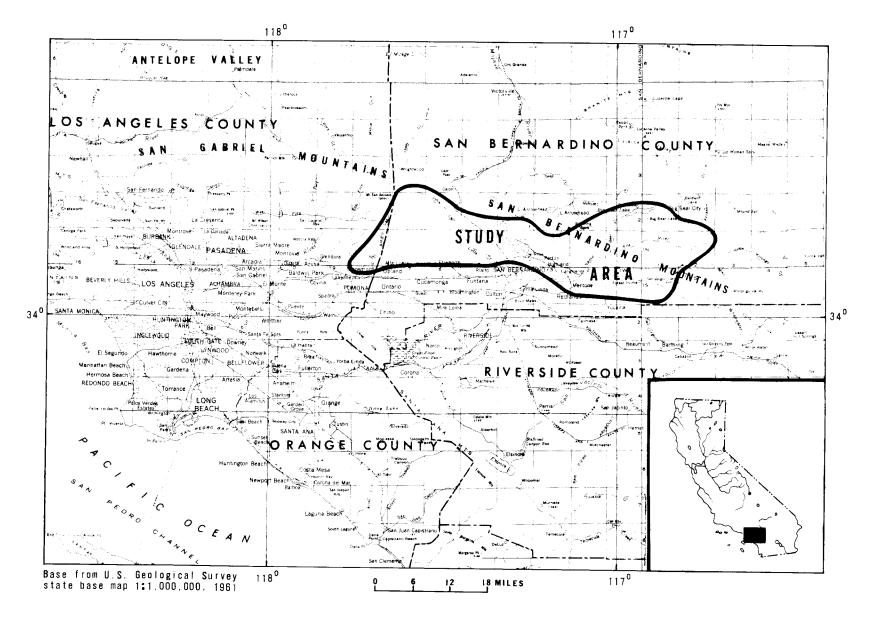


FIGURE 1.--Study area.

This report is one of a planned series covering the water resources of the area. This report discusses the generalized flow characteristics of the mountain area to allow determination of the quantities of water available. The other reports will discuss the use of water-spreading facilities to conserve the water and the effects on the flow regimes of urbanization on the valley floor.

The study area is the wettest in San Bernardino County. The water originating in the area is relied upon to supply some of the needs of water users in the lower valleys, mainly through the use of water spreading to induce artificial recharge.

Because the county's water needs are large, and growing larger every year, full utilization must be made of the runoff from the study area. A prerequisite for the planning of the development of the water resources of the area is a detailed description of the supply, including both the spatial and the time distribution of runoff. This report attempts to fill that need for the most populated part of the county.

Various aspects of the hydrology of the area have been reported by several investigators. One of the principal studies was by Troxell and others (1954). The reports of other studies are listed in the selected references.

The mass of data collected by the U.S. Geological Survey (1960, 1963, 1970) in the study area has been analyzed to define the generalized streamflow in the area. There are several ways of generalizing streamflow occurrence; the method chosen for this study was that of statistical correlation of streamflow characteristics with topographic and climatic characteristics of the watershed.

In this study all records of streamflow in the area that represent natural flow conditions, or that could be adjusted to natural flow by adding the diversions, were used if they had at least 10 years of record. Only the observed streamflow record was used in computing the streamflow characteristics, such as mean monthly or mean annual discharge. No attempt was made to select records covering a common base period, to fill in missing records, or to adjust streamflow statistics to represent any selected time or base period. Generalization using records from whatever periods may be available is consistent with considering them as random data and will usually lead to the best description of long-term expectancy. The known disadvantages of not adjusting the records (including a wider variance of errors of prediction of streamflow characteristics) are considered less undesirable than the possible bias introduced by a base or common period, if the common period is one in which the flow is either higher or lower than the long-term mean.

This study by the U.S. Geological Survey was made in cooperation with the San Bernardino County Flood Control District. The report was prepared by the Geological Survey under the general direction of R. Stanley Lord, district chief in charge of water-resources investigations in California, and under the immediate direction of James L. Cook and R. E. Miller, successive chiefs of the Garden Grove subdistrict.

DESCRIPTION OF AREA

Geology and Physiography

The San Bernardino and San Gabriel Mountains are distinguished by their rugged terrain, steep-walled canyons, and sharp peaks, some of which reach elevations of more than 10,000 feet. The mountains are composed mostly of schist and gneiss, of Precambrian to Mesozoic age. This metamorphic complex was intruded by plutonic masses, generally of granitic composition but including a broad spectrum of lithologic types. Shale, sandstone, quartzite, and altered limestone are found in parts of the San Gabriel Mountains. Sandstone and conglomerate, of Tertiary age, are clearly evident in the San Bernardino Mountains to the north and east. Remnants of Pleistocene alluvial-fan deposits scattered throughout the mountain areas are evidence of still-active tectonism throughout the ranges.

The streams draining the San Bernardino and San Gabriel Mountains can be divided into two groups. In the first group are the streams that drain the steep mountain front. In the second group are the streams that drain the high and less-rugged interior of the mountains. The streams of this second group, and those of the first group that debouch into the upper Santa Ana River basin, create flood problems of economic importance.

Climate

The previously described mountains in the study area form a barrier to the prevailing winds that sweep moisture-laden air masses in from the ocean. As the air masses rise over the barrier, the moisture in them is precipitated on the windward side of the barrier.

The climate is temperate and humid at the higher elevations. This contrasts with the semiarid climate in the lowlands to the south and the arid climate north of the mountains. However, precipitation in the area is distinctly seasonal, little occurring during the period July through September. The seasonal distribution of precipitation is controlled mainly by the existence of an anticyclonic cell off the coast of California during the summer. This anticyclone becomes firmly established in mid-summer and, except for sporadic reappearances, disappears in October. The frequent winter precipitation occurs when the anticyclonic cell is not present or is far south of its usual position.

Temperatures are quite varied, as would be expected in an area containing both mountains and deserts. The summers are warm and dry, with only slightly cooler temperatures in the mountains. Temperatures of more than 100°F in the valleys and of near 90°F in the mountains are common. Winters are usually mild, although freezing temperatures occur almost every year and snow accumulates in the mountains in December, January, and February.

Precipitation and Runoff

About 81 percent of the annual precipitation occurs during the 5 months from November through March. Table 1 gives mean monthly precipitation in percentage of the mean annual for two stations in the mountains and two stations in the lowlands near the study area. Some snow falls in the area, but snow does not remain on the ground for any appreciable length of time except at elevations above 5,000 feet.

TABLE 1.--Distribution of mean monthly precipitation at selected stations

Chiti	Elevation of station	Mean annual Precipitation		Mean	monthly	precip	itation	in per	centage	of mean	n annual	l precip	pitatio	n
Station	(feet)	(inches)	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.
Squirrel Inn No. 2 Lake Arrowhead Redlands	5,680 5,205 1,318	40.99 39.90 14.25	4.71 4.11 5.47	8.00 10.60 7.16	17.59 16.42 15.72	20.80	21.80 18.87 18.60	15.98 15.01 17.61	8.78 9.40 8.63	2.02 2.41 4.21	0.34 .30 .63	0.22 .25 .35	0.51 .98 1.40	1.61 .85 2.04
San Bernardino County Hospital (in city of San Bernardino)	1,125	16.57	4.53	7.85	16.60	19.91	19.37	16.66	8.69	3.50	.54	.18	.84	1.33

Mean annual precipitation in the area is influenced by elevation, shape, steepness, and direction of mountain slopes in relation to the moisturebearing winds. Because the winds come from the Pacific Ocean, precipitation is heavier on the southern and western slopes of the mountains than on the northern and eastern slopes. Figure 2 is part of an unpublished isohyetal map compiled by S. E. Rantz of the U.S. Geological Survey in 1967 from several sources. The precipitation is highly variable, so that even in the more humid parts of the area annual precipitation in some years may be but a small fraction of the long-term mean.

Because runoff is the residual of precipitation after the extractions of evaporation, transpiration, and percolation have taken their share, runoff tends to be even more variable than the precipitation.

The mean annual precipitation on the drainage areas of the streams whose annual runoff was used in this study ranges from 10.00 inches to 35.00 inches and averages 25.18 inches. Runoff ranges from 0.54 inches to 17.2 inches, or 5.4 percent and 50.6 percent, respectively, of the precipitation. For the group of 29 stations studied for annual runoff, the runoff averages 6.34 inches, or 23.2 percent of the average precipitation.

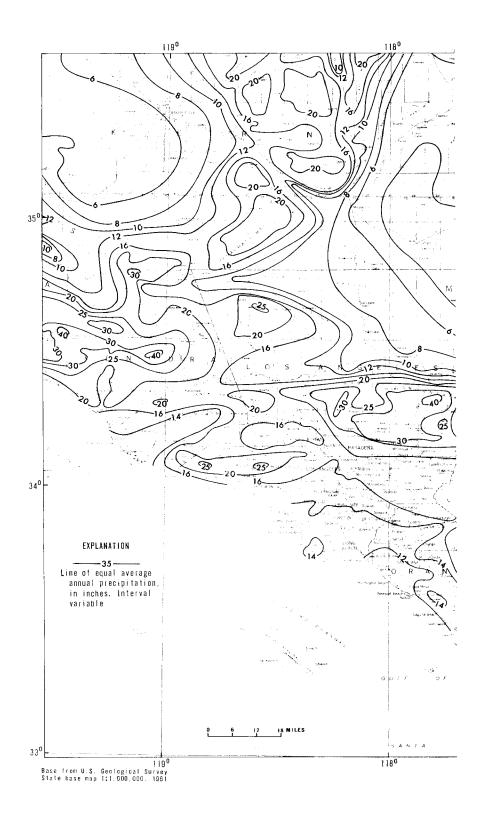


FIGURE 2.--Mean annual precipitation.

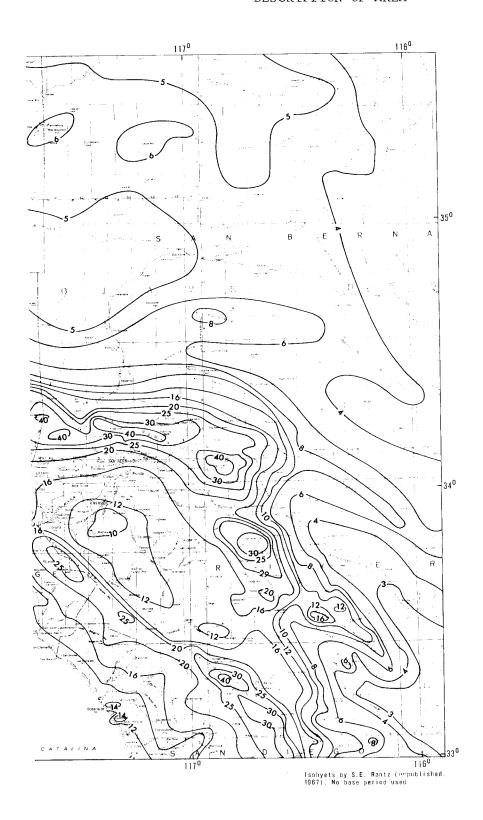


FIGURE 2.--Continued.

The San Bernardino and eastern San Gabriel Mountains receive most of their precipitation during the period November through March (table 1). During these 5 months almost 60 percent of the annual runoff occurs. During April, May, and June another 30 percent occurs, making a total of about 90 percent in 8 months. Thus, little runoff occurs in the 4 months from July through October.

Figure 3 shows the precipitation at Squirrel Inn No. 2 in the San Bernardino Mountains above San Bernardino and the runoff from Waterman Canyon Creek near Arrowhead Springs just north of San Bernardino. The precipitation bar graph shows the variability of Squirrel Inn No. 2. The precipitation averaged 40.99 inches, but ranged from 14.13 inches in 1947 (34.5 percent of mean) to 78.84 inches in 1969 (192 percent of mean), or a range of more than 5 times. The runoff bar graph shows that the variation of runoff is similar to that of precipitation. The runoff averaged 7.61 inches (1,840 acre-feet) and ranged from 0.86 inch in 1961 (212 acre-feet) or 11 percent of the mean to 37.3 inches in 1969 (9,020 acre-feet) or 490 percent of the mean, or a range of more than 43 times.

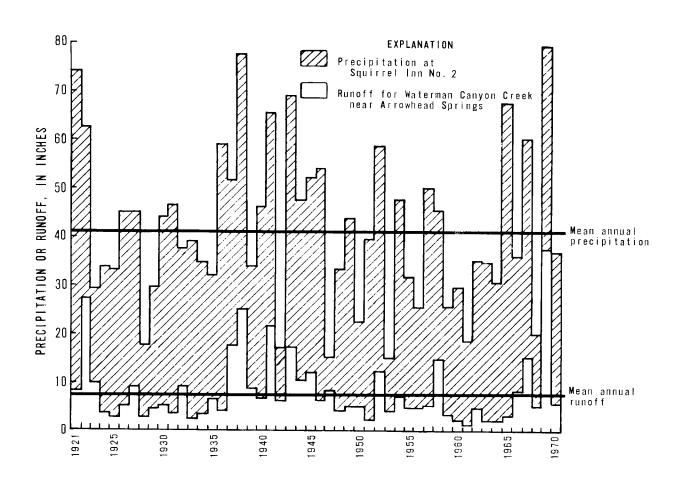


FIGURE 3.--Annual precipitation and runoff.

Santa Ana River Basin

The Santa Ana River has its source high in the eastern part of the San Bernardino Mountains. The river flows generally west from its source and then southwest into the San Bernardino Valley where it is joined by most of its principal tributaries. The river then continues its southwestward course toward a gap in the Santa Ana Mountains where it empties into the reservoir formed by Prado Dam. During floods, some water from the Santa Ana basin flows out of Prado reservoir and is wasted into the Pacific Ocean. Along its course, the Santa Ana River is the source of water supply for extensive agricultural lands.

METHOD OF ANALYSIS

Gaging of all sites on all streams in the basin is neither possible nor desirable. The available records, therefore, provide only a sample of the areal extent of the streamflow. In addition, because streamflow records have been collected for only a limited period, they provide only a sample of the streamflow variations in time.

Because of this sampling of streamflow, definition of the streamflow at any desired site requires a method of transferring available streamflow information. Many transfer methods have been proposed. They range from the simple extrapolation or interpolation of information gathered at two sites on the same stream, to rainfall-runoff techniques, to complex statistical and mathematical methods that simultaneously consider many streamflow records and the environmental characteristics of the contributing drainage basin above each gage.

After a survey of known transfer methods, the multiple-regression method showed the most promise and efficiency. This is a statistical method of handling sample data that can relate a streamflow characteristic to the topographic and climatic characteristics of the drainage basins that affect streamflow. Other studies have shown that multiple-regression methods have successfully related streamflow to topographic and climatic characteristics. Therefore, multiple-regression analysis was used to develop separately the relations between the streamflow characteristics (dependent variables) and the drainage-basin characteristics (independent variables).

Briefly, multiple regression provides a linear mathematical equation of the relation between a single dependent variable and the independent variables. It also provides a measure of the accuracy of the defined relation (the standard error of estimate) and of the usefulness of each independent variable in the relation. The usefulness of each independent variable to any relation is judged both on the basis of its statistical significance and on the basis of the reduction in the standard error that is brought about by including the variable. Those independent variables that had a 90-percent or greater probability of effectiveness were classed as significant to that equation. In a few of the regressions some independent variables having less than a 90-percent probability of effectiveness were also used in the equation because their inclusion would decrease the standard error by at least 1 percent.

Past experience in many hydrologic studies has shown that flows are linearly related to most hydrologic characteristics if the logarithms of each are used. Therefore, logarithmic transformation of all streamflow and hydrologic characteristics was done before computations were performed.

A high-speed digital computer performed the voluminous computations required for regression analysis. The procedure involved entering a single streamflow variable along with the selected hydrologic variables into the computer for each of the gaging stations in the area. The technique first computes the regression equation, standard error of estimate, and effectiveness of the most significant independent variable. The system then automatically repeats the computations, adding the next most significant independent variable. This process of recomputation, adding the next most effective independent variable, was repeated until all variables were used in the regression. After all the independent variables for a given streamflow characteristic had been evaluated, the entire process was repeated using another streamflow characteristic as the dependent variable and the selected set of hydrologic characteristics as independent variables.

The equation with the greatest number of independent variables, all of which are significant, would ordinarily be used to make predictions unless other considerations modify the choice. If an independent variable is significant but has only a small effect on the standard error, it might be omitted.

One of the practical requisites in multiple-regression analysis is that the various independent variables not be highly correlated among themselves. Violation of this criterion can lead to unstable values for the regression coefficients and to difficulties in interpreting the effectiveness of the independent variables included in the equation. Although it is preferable to have a set of topographic and climatic variables that are entirely independent of each other, this is not possible because nearly all topographic and climatic variables exhibit some degree of interdependence. To investigate the amount of non-independence, a simple partial correlation coefficient matrix of the evaluated hydrologic characteristics was obtained for this study, and the results are shown in table 2. In table 2 a value of 1.00 means perfect correlation and a value of -1.00 means perfect inverse correlation.

TABLE 2	Simple	correlation	matrix	of	basin	characteristics
---------	--------	-------------	--------	----	-------	-----------------

	Area	Precipitation	Length	Slope	Precipitation intensity	Forest	ilevation 55,000 leet	Evapotranspiration
Area Precipitation Length Slope Precipitation intensity Forest Elevation >5,000 feet Evapotranspiration	1.000	-0.511 1.000	0.942 502 1.000	0.634 .417 603 1.000	-0.419 .622 395 .109 1.000	-0.492 .490 477 .283 .384 1.000	0.469 133 .416 .923 .383 172 1.900	0.614 325 .548 548 112 232 .471

STREAMFLOW CHARACTERISTICS

Streamflow records have been collected on many streams in or near the study area. Many of the records, however, do not represent the natural flow of the streams and could not be used in this study. The 35 gaging-station records that were used were chosen because they represent natural flow conditions, or could be adjusted to represent natural flow, and were at least 10 years in length. Of the 35 gaging stations, 14 are in the Santa Ana River basin, two in the Mojave River basin, four in the San Gabriel River basin, nine in the Los Angeles River basin, two in Antelope Valley, and four on desert streams near Palm Springs (fig. 4). The addition of the 21 stations to the 14 within the Santa Ana basin provides a good range in drainage-area size and precipitation, the two basin characteristics that were found to be most closely related to the streamflow characteristics used in the multiple-regression equations.

Although 35 gaging stations were selected for the regression analysis, some of the flow characteristics for some stations could not be used. For example, for Little San Gorgonio Creek near Beaumont, the low flows were not used because several small diversions that did not affect the high flows distorted the low-flow figures. The peak flow and the maximum average 1- to 15-day flow having a 50-year recurrent interval were not determined at any station with less than 25 years of record.

Mean flows.—The mean of the annual mean discharges and of each of the monthly mean discharges was computed for each gaging station to provide 13 indices of average streamflow. Additionally, 5-month (November through March) and 8-month (November through June) means were computed and used in the relations, but the results were not reported because the relations were less reliable, and less useful, than the relations for the annual mean.

In this report \mathcal{Q}_{a} represents the mean of the annual discharges and \mathcal{Q}_{n} represents the mean of the monthly discharges, with n denoting the month, starting with January as 1.

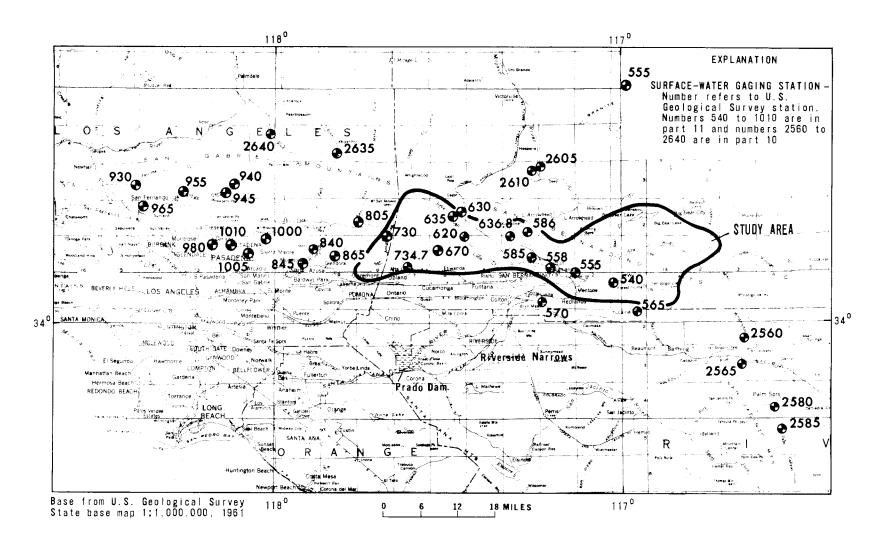


FIGURE 4.--Location of gaging stations.

Momentary flood peaks.—The annual maximum discharges expected to be exceeded at the gaging site on the average of once each 2, 5, 10, 25, and 50 years were determined from the records for each gaging station, except that the discharges for a recurrence interval of 50 years were not used if the record was less than 25 years in length. In this report the momentary flood peaks are represented by P_n , where the subscript represents the recurrence interval in years. The flood peaks were determined by methods outlined by the Water Resources Council (1967). No search for information on historic floods was made for this study.

Flood volumes.—The annual maximum flood-discharge volumes for four time intervals and two recurrence intervals were determined from each record. These discharges represent the highest average flow for a 1-day, 3-day, 7-day, and 15-day period that can be expected to be exceeded on the average of once each 2 and 50 years. The symbol $V_{n,m}$ represents the flood volumes in this report, where n represents 1, 3, 7, or 15 days, and m is the 2- or 50-year recurrence interval. The flood volumes were also determined by a method similar to that outlined by the Water Resources Council (1967).

DRAINAGE-BASIN CHARACTERISTICS

The meteorologic and topographic characteristics of a stream basin, herein called basin characteristics, affect the streamflow from that basin. Precipitation, the primary source of streamflow, varies from basin to basin in the report area. Streamflow reflects precipitation variations and is further varied by differences in surface characteristics, drainage patterns, storage of water in the soil mantle, water loss by evaporation and transpiration, and possibly subterranean flow into or out of the basins. Such physical characteristics of a basin that may influence streamflow commonly can be represented by simplified indices.

Some of the basin characteristics, such as geology, cannot yet be satisfactorily represented by easily determined numerical indices. Most characteristics can be evaluated from maps or tabular data. The practical limitations of time and of the statistical procedures used required the selection of a limited number of basin variables. Variables used in this study were selected on the basis of hydrologic, hydraulic, geologic, and meteorologic principles; upon the degree of success experienced in use of certain variables in previous studies; and on the ease of enumeration. The further criterion that regression analysis produces optimum results if the independent variables are not highly correlated among themselves was also considered in selecting the independent variables.

The basin characteristics selected for evaluation as independent variables in the regression and the method of evaluation are given below. The values of the characteristics for the 35 stations used in the analysis are given in appendix A.

<u>Drainage area.</u>—Drainage area (A) can intuitively be considered a logical cause of streamflow variation between sites. Drainage areas, in square miles, shown in the latest Geological Survey streamflow reports were used in this study.

Mean annual precipitation.—Mean annual precipitation (P) is a measure of the quantity of water supplied to a drainage basin and thus constitutes the potential runoff. For each drainage area, mean annual precipitation in inches was determined by planimetering the isohyetal map of figure 2. Most of the isohyets of figure 2 were compiled from isohyetal maps prepared by the U.S. Weather Bureau for 1931-60. Some additional detailing was from isohyetal maps compiled using data from the U.S. Corps of Engineers for 1907-56.

Main-channel length.—Main-channel length (L) was selected as an indication of basin shape in conjunction with drainage area. Values of main-channel length in miles, from the gaging station to the basin divide, were measured on topographic maps with a pair of dividers set to a scale length of 0.1 mile.

Main-channel slope.—Main-channel slope (3) is another factor that can intuitively be assumed to influence streamflow. For this study a simple index of slope developed and successfully used by Benson (1962, 1964) was selected. This index is the average slope in feet per mile of the main channel between points 10 percent and 85 percent of the distance upstream from the gaging station to the basin divide.

<u>Precipitation intensity</u>.--Many investigators (Benson, 1962; Chow, 1964; Linsley and others, 1949) have found precipitation intensity to be a useful variable in explaining the basin-to-basin variations in floodflows. For this study, the precipitation intensity selected was the maximum 24-hour precipitation expected to be exceeded on the average of once each 2 years. Values of this index (\mathcal{F}) , in inches, as shown in figure 5, were taken from figure 20 of Technical Paper 28 of the U.S. Weather Bureau (1956).

Forested area. -- Forests may affect streamflow by transpiration, by causing direct evaporation losses as precipitation is intercepted, and by modifying the accumulation and melting of snow. The index of forest cover (/) used is the percentage of total drainage area shown as forested on the topographic maps, increased by the value of 1.0 to avoid difficulties associated with the use of zeros in the regression analysis.

Elevation.—Although elevation itself may not directly cause streamflow variation, it may serve as an index to other factors that cause basin-to-basin streamflow variation but are difficult to evaluate. Radiation, temperature, wind, vegetation, and basin ruggedness, for example, may vary with elevation. For this study the index of elevation (E) selected is the percentage, increased by the value of 1.0, of each drainage area that lies higher than 5,000 feet above mean sea level.

RESULTS 15

Potential evapotranspiration. -- Because runoff is the residual of precipitation after all extractions have been met, one of the larger of the extractions, evapotranspiration, could be expected to be related to streamflow. As an index of this evapotranspiration, lake evaporation (Ev), in inches, was evaluated for all basins from figure 6. This figure is from a map showing average annual lake evaporation in Technical Paper 37 of the U.S. Weather Bureau (1959).

RESULTS

Table 3 summarizes the results of the multiple-regression analysis. These analyses defined mathematical equations of the form:

$$\log Y = \log \alpha + b_1 \log X_1 + b_2 \log X_2 \dots + b_n \log X_n$$

or its equivalent form:

$$Y = a \chi_1 b_1 \chi_2 b_2 \dots \chi_n b_n$$

where Y represents a streamflow characteristic, X_1 to X_n represent basin characteristics, α represents the regression constant, and b_1 to b_n represent regression coefficients.

The first column of table 3 indicates the streamflow characteristic studied. The next set of columns shows the computed regression constant and regression coefficients for that streamflow characteristic. The last two columns show, respectively, the standard error of estimate both in logarithmic units and as an approximate equivalent percentage.

In general, the table shows several relations for each flow characteristic. The top line for each characteristic shows its standard deviation, a measure of the error in using the mean of the sample data as an estimate of that characteristic at any site. The second line indicates the most accurate relation when using one independent variable, and succeeding lines indicate more complex relations of increasingly superior accuracy. The last line for each streamflow characteristic shows the most accurate relation in which all basin characteristics are effective with at least 90-percent confidence. For the majority of relations in table 3 the regression coefficients are statistically significant at the 95-percent confidence level. A few relations are shown with regression coefficients that are significant at the 90-percent level, and in two cases with the regression coefficients not significant at the 90-percent level; in each instance inclusion of the coefficient reduced the standard error by at least one percent.

All the streamflow characteristics previously discussed are included in table 3 except the November through March 5-month mean flow and the November through June 8-month mean flow. These two were not included because the associated regression errors were larger than the regression error for the mean annual flow, and they therefore should not be used as annual-flow indicators.

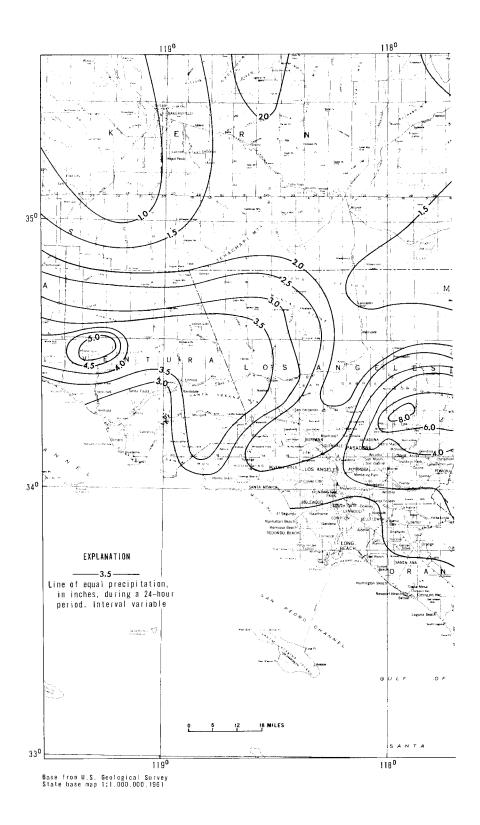


FIGURE 5.--Two-year 24-hour precipitation.

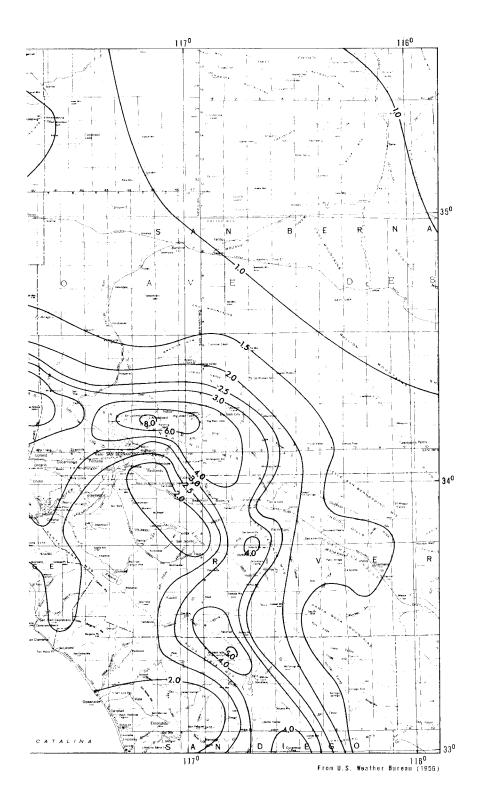


FIGURE 5.--Continued.

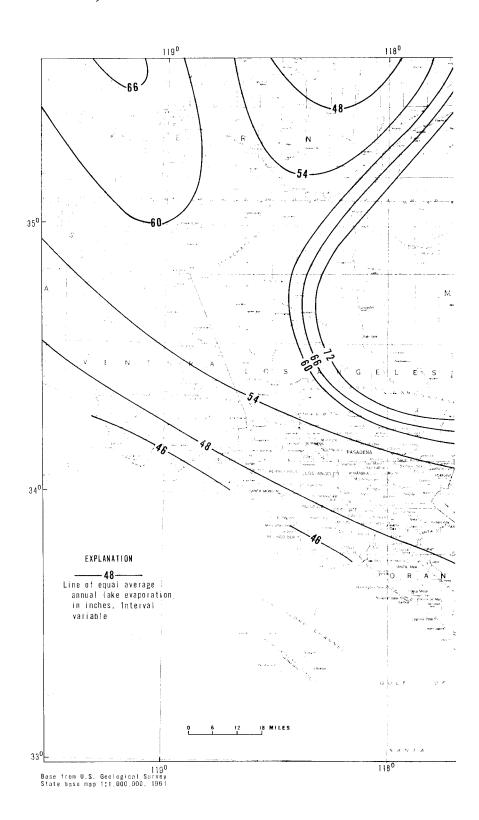


FIGURE 6.--Average annual lake evaporation.

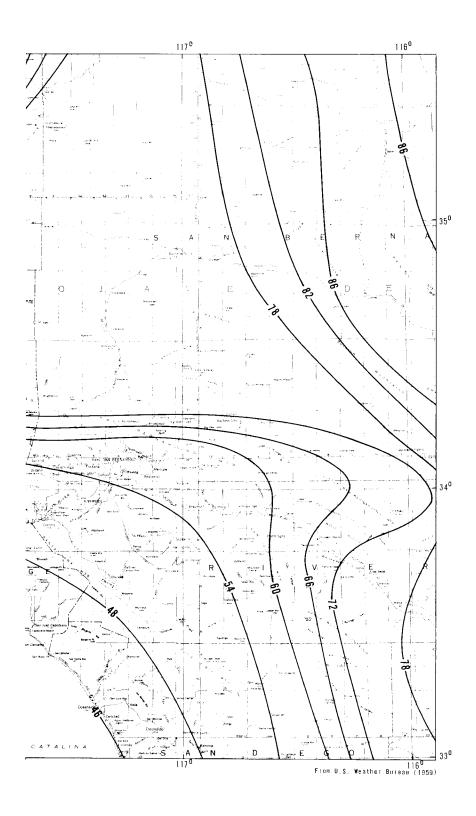


FIGURE 6.--Continued.

TABLE 3.--Summary of constant and coefficients for regression equation $Q = aA^{b_1} \ P^{b_2} \ L^{b_3} \ S^{b_4} \ I^{b_5} \ F^{b_6} \ E^{b_7} \ I^{b_8}$

[All regression coefficients are statistically significant at the 5-percent level except those preceded by the letter a which are significant at the 10-percent level and those preceded by the letter b which are nonsignificant at the 10-percent level. Top line for each flow characteristic shows its standard deviation.]

	Flow	Regression			Main	Reg Main	ression coeffici	ent				d error
0.896	index			Mean annual precipitation	channel	channel	Precipitation intensity	Forest	Elevation >5,000 feet	Potential evapotranspiration	Log units	Percen
1,13 10 ⁻³ 1,100 2,40 1,105 1,106 1,112 1,107	Q_{a}						War 100				0.477	133
1.12 1 1.02 1.02 1.03 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05		0.836										90.7
71		.141 x 10 ⁻³										54.9 52.1
		.189 x 10 ⁻⁸								a2.27		50.0
1.09 x 10 ⁻² 10.2 2,64	71										.489	138
1,10		.952	. 74								. 32.7	82.6
1.122		.679 x 10 ⁻⁴	1.02								.208	49.7
1,122		.286 x 10-7	.91	2.71						al.90	.201	48.5
1.19 x 10 ⁻² 1.04 1.44 0.79 1.256 1.50 x 10 ⁻² 1.05 1.04 1.44 0.79 1.267 1.512 x 79 1.05 1.05 1.56 1.267 1.101 x 10 ⁻² 1.05 1.55 1.56 1.27 1.25 1.267 1.101 x 10 ⁻³ 1.02 2.13 1 1 1.27 1.25 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	12										.502	143
1.60 x 10 ⁻⁶² 1.04 1.44		1,321										79.1
1,512		.109 x 10 ⁻²										62.4 60.0
1,00 x 10 ⁻² 1,05 1,54	73							~			.508	1.46
1,670 x 10 ⁻² 1,05 1,54		1.512	. 79								. 326	82.3
1.03 x 10-x 1.05 1.55 1.56		$.670 \times 10^{-3}$	1.02	2.13							.257	62.7
1.101		.103 x 10 ⁻²					a.89					59.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 ₄										.529	154
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.101										87.8
. 966		.120 x 10 ⁻³										60.0 58.4
1.125 x 10 ⁻¹ 1.03 3.08	7 ₅										.551	164
. 125 x 10 ⁻¹ 1.03		.966	.67								.460	127
7.43 x 10 ⁻¹³ 1.16		.125 x 10-4	1.03									88.4 72.1
. 780		.743 x 10 ⁻¹³	1.32									66.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76										.598	186
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 780	.51								.557	166
1.547 x 10-17		.167 x 10-5	.94									117
$q_7 = \begin{array}{ccccccccccccccccccccccccccccccccccc$.121 x 10 ⁻⁹								5.06		117 77.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.248 x 10 ⁻¹⁸	a.68								.304	75.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 7										.782	294
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$.371 \times 10^{-1}$				a.35	~-				.750	292
$q_8 = \begin{array}{ccccccccccccccccccccccccccccccccccc$. 790 × 10 ⁻⁵										204 178
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.790 x 10 ⁻²⁴										153
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	q _n										.888	380
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v	100							0.74		77.5	269
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.226 x 10 ⁻²										242
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.742 x 10 ⁻⁴				a.61	2.24		.84		.667	222
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.231 x 10-7										186 341
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.972 x 10 ⁻¹										222 194
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.894 x 10-4					2.25		. 89		.585	179
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.162 x 10 ⁻⁶			1.25							159
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^q 10											399
$q_{11} \begin{array}{cccccccccccccccccccccccccccccccccccc$.249 x 10 ⁻¹										382 298
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.702 x 10 ⁻²²								8.98	.737	264
.530 .67		.126 x 10 ⁻²⁸			1.84	1.68						225
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^q 11											166
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.530	.67									129 92.
.193 x 10-14 1.13 2.8274 4.37 .274		.932 x 10 ⁻⁵	1.03									75.9
105 v 10=12 1 69 2 60 = 96 71 == == 3.67 .256		.193 x 10 ⁻¹¹	1.13	2.82		.74					.274	67.4
.105 X 10 1.06 2.0971		.105 x 10-12	1.68	2.69	96	.71				3.67	.256	62,4

TABLE 3.—Summary of constant and coefficients for regression equation $Q = aA^{b_1} P^{b_2} L^{b_3} S^{b_4} I^{b_5} F^{b_6} E^{b_7} I^{b_8} -- \text{Continued}$

		Regression coefficient Main Main Projectories Floration Potentia								Standard erro	
Flow index	Regression constant	Drainage area	Mean annual precipitation	channel length	channel slope	Precipitation intensity	Forest	Elevation >5,000 feet	Potential evapotranspiration	log units	Percen
712										0.511	147
	0.772 .204 x 10 ⁻³	0.80	2,28						 	.329	83,2 60.5
	.428 x 10 ⁻⁴	1.16	2.13		0.29					.235	56.8
	.296 x 10 ⁻³	1.10	2.34		.27		b-0.53			.231	55.7
2						~~				.495	J 40
	.132 x 10 ²			1.33						.306	76.4
	1.096 1.190	.42		1.54 .85		1.26 1.36				.275	67.6
5										. 495	140
5										2/2	
	.807 x 10 ² 9.353	.81 .92		1,13						.269	66. 58.
	6.386	.58		.63		1.13				.236	57.
10										.488	1 38
	.148 x 10 ³	.83							and the	.235	56.
	.224 x 10 ²	.93				.99				.210	50. 49.
	3.064 1.872	.97 .68	a.72 a.78	ь.56		а. 66 а. 64				.200	47.
25		***							and the same	.489	138
	.660 x 10 ³	.84								.210	50.
	2.351	.99	1.33				-			.167	39.
50										.486	137
	.485 x 10 ³ 9.886	.81 .93	1.07							.258	63. 57.
1,2										.560	168
	6.862	.80					-			.379	98.
	.353 x 10 ⁻²	1.03	2.10	***						. 328	82.
	$.230 \times 10^{-2}$ $.502 \times 10^{-8}$	1.15 1.02	2.26 2.31					-0.17 21	3.25	.313	78. 73.
3,2				Min and						.571	173
-,-	4.453	70								.409	109
	$.605 \times 10^{-3}$.78 1.05	2.47						**	.340	86.
	.406 x 10 ⁻³ .452 x 10 ⁻⁹	1.16 1.02	2.62 2.67					1.5 19	3.42	.329 .312	83. 77.
7,2									**	.579	177
,,4										(05	/
	2.876 .168 x 10 ⁻³	.77 1.06	2.70							.425	114 87.
	.346 x 10 ⁻⁸	.92	2.71					a17	a2.71 3.51	.335	85. 80.
,	.940 x 10 ⁻¹⁰	1.01	2.88					a1/	3.31	.590	182
15,2										•334	
	1.901	.77								.438	119 87.
	.479 x 10 ⁻⁴	1.09 .94	2.94 2.95						a2.86	.333	84.
	.306 x 10 ⁻¹⁰	1.01	3.08					a14	3,49	.326	82.
1,50										.500	142
	.126 x 10 ³ .344 x 10 ⁻³	.86 1.11					2.67		 	.248 .175	60. 41.
	.173 x 10-2	1.14	a.78				1.74		*	.169	39
3,50										.484	136
-	.798 x 10 ²	.83								.239	57
	.382	1.04	1.45							.185	43. 42.
	.683 x 10 ⁻²	1.08	a.85				a1.30			.180	
7,50										.470	131
	.509 x 10 ²	.78 1.02	1.63							.256 .191	62 45
, 15,50								***		.462	128
,50	.350 x 10 ²	.74								.277	68
	.442 x 10 ⁻¹	1.00	1.81							.200	4.7

ACCURACY OF RELATIONS

The standard error of estimate is a measure of the accuracy of a developed regression relation. It shows the variation in the streamflow characteristic that is unexplained by the basin characteristics used and, therefore, indicates the level of success of each relation. The standard error of estimate means that if estimates for a large number of sites are made using a given relation, about two-thirds of these estimates would be within the stated standard error of the true value and about 95 percent would be within twice the standard error.

Accuracy of the defined relations is shown in figure 7. This figure indicates that the defined relations are more accurate for the higher flows than for the lower flows. This is somewhat misleading, however, because the absolute values of the low flows are so small that a large percentage error is still a small flow difference. A surprising result was the relatively high error for the mean annual flow. In all similar studies made previously, the mean annual flow was the best defined of all the relations. Possibly, in the San Bernardino and San Gabriel Mountain area, the mean annual flow is more closely related to the low flows than to the high flows.

Because of this unexpected larger error for the mean annual flow, the means of two other flow periods were tried. The 5-month rainy season from November through March and the 8-month period from November through June were selected and the means were regressed against the basin characteristics. The error for these two periods proved to be even larger. Consequently, they were dropped from further consideration.

The errors for all the relations are quite large, a situation that may be typical of the diverse southern California watersheds. Crippen and Beall (1970) reported even larger errors for the south-coast region in a report covering the entire State of California.

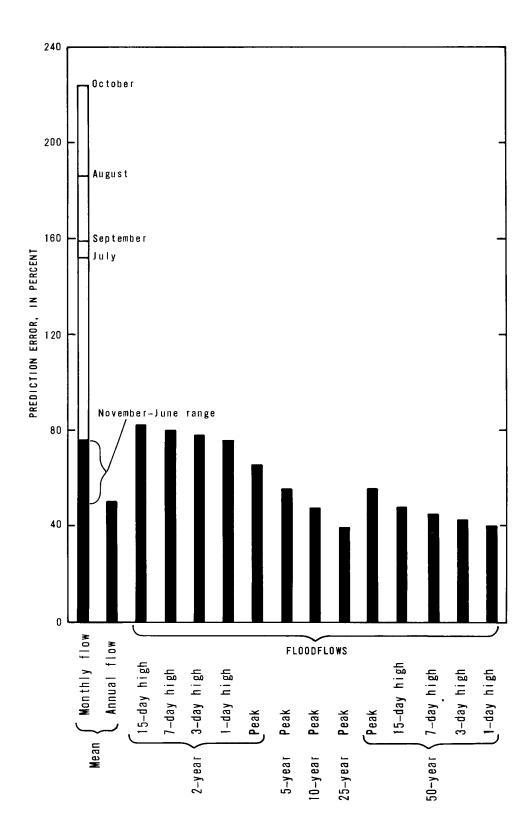


FIGURE 7. -- Accuracy of defined relations.

APPLICATION OF EQUATIONS

Specific methods are presented in this section for computing any of the streamflow characteristics desired. Because the methods only use data readily available on maps, graphs, or tables, any desired streamflow characteristic for any stream channel site within the study area can be determined without field investigation. No previous streamflow records are required by the methods. The methods can also be used at sites where limited streamflow records are available or where regionally smoothed data are desired.

Several limitations in the application of the equations should be recognized. The relations were developed using only unregulated streamflow records, so that results will also represent unregulated flows. Any effects of man such as urbanization or flood control must be assessed separately and the computed streamflow characteristics adjusted accordingly. The relations should not be used for drainage areas greater than 140 square miles or less than 1.5 square miles. In addition, the relations are not applicable for stream sites on the valley floor. Only those sites where the total basin upstream is in the mountains or in the foothills are subject to determination of streamflow characteristics by the equations.

The first step in the application of the equations is to assemble the values of the significant basin characteristics. The step-by-step procedure for determining the eight characteristics follows:

- (1) Drainage area.—The drainage area (A) is determined by locating the site on a Geological Survey topographic map, scale: 1:24,000 or 1:62,500, and outlining the drainage above the site. This area is then planimetered to give the drainage area in square miles.
- (2) <u>Annual precipitation</u>.—The annual precipitation (*P*) is determined from figure 2 by locating the basin and reading the value of annual precipitation in inches at the centroid of the basin by interpolating between isohvets.
- (3) Channel length.—The channel length (L) is determined from the same topographic map as used for determination of the drainage area. The river mile distance from the site to the basin divide, following the path of the main channel shown on that map is measured. The main channel is considered that channel which drains the largest basin. This distance is most easily measured by setting a pair of dividers to 0.1 mile and counting the steps up the main channel.
- (4) Channel slope.—The channel slope (S) is determined from the same topographic map as used for determination of the drainage area. The values of 10 percent and 85 percent of the channel length computed in (3) above are determined. These points are located on the topographic map. This places one point 10 percent of the distance above the site, and the other point 15 percent of the distance below the headwaters. The elevation of the streambed is then determined at these two points by interpolating between contours. The channel slope is then computed between the 10- and 85-percent points and is expressed in feet per mile.

- (5) <u>Precipitation intensity</u>.—The precipitation intensity (I) is determined from figure 5 by locating the basin and reading the value of the intensity in inches at the centroid of the basin by interpolating between isohyets.
- (6) Forest cover.—The forest cover (F) is determined on the topographic map that shows forest cover as green shading. This should be the same map as used for determination of the drainage area. The area with green shading within the drainage outline is planimetered to give the area of forest cover in square miles. This figure is then divided by the drainage area to give a percentage, and finally 1 percent is added to eliminate any zeros from the computation.
- (7) Elevation greater than 5,000 feet.—The elevation greater than 5,000 feet (E) is determined from the same topographic map as used for determination of drainage area. The 5,000-foot contour line is located, and the area above this contour within the basin is planimetered to give the area above 5,000 feet. This is then divided by the drainage area to give a percentage and then, as above, 1 percent is added.
- (8) Evapotranspiration.—The evapotranspiration (T) is determined from figure 6 by locating the basin and reading the value of the evapotranspiration, in inches, at the centroid of the basin by interpolating between isopleths.

The values of these eight basin characteristics for the 35 stations used in the analysis are given in appendix A.

The various equations using the basin characteristics were discussed earlier. The general equation in its logarithmic transformation form is as follows:

$$\log Q = \log \alpha + b_1 \log A + b_2 \log P + b_3 \log L + b_4 \log S + b_5$$

 $\log I + b_6 \log F + b_7 \log E + b_8 \log T$

where Q equals flow characteristic, α and b are coefficients whose values are listed for each equation in table 4, and the eight basin characteristics are described earlier.

After completing the determination of the basin characteristics, a convenient method for solving any of the equations is to copy the logarithms of the values onto a strip of paper to match the appropriate columns of table 4. Then place the strip of paper below the coefficients of the line (equation) to be solved and multiply each coefficient by its respective value on the strip of paper and add the products. The antilog of the sum provides the answer for that particular flow characteristic.

Several examples of solutions for a number of flow characteristics are given in appendix A. The basin characteristics for each of the 35 stations used in the analysis are given in appendix B, with the solutions from the regression equations for the 26 flow characteristics given in appendix C.

Appendix D summarizes the results for all the flow characteristics for each station.

TABLE 4.--Values of coefficients for logarithmic solutions of streamflow characteristics

[In this table a and b coefficients are used for solving the general equation: $\log Q = \log a + b_1 \log A + b_2 \log P + b_3 \log L + b_4 \log S + b_5 \log I + b_6 \log F + b_7 \log E + b_8 \log T$; if no coefficient is shown, that term is omitted]

	Coefficients												
Streamflow characteristics		Area A	Precipi- tation P	Length	Slope S	Intensity I	Forest F	Elevation E	Evapotran- spiration T				
, , , , , , , , , , , , , , , , , , , 	Log a	<i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> ₄	<i>b</i> ₅	<i>b</i> 6	<i>b</i> 7	<i>b</i> 8				
Mean annual	-8.724	1.024	2.349		0.317				2.271				
Mean January	-7.544	.909	2.717						1.905				
Mean February	-2.796	1.036	1.437			0.790							
Mean March	-2.987	1.055	1.542			.891							
Mean April	-3.012	1.039	2.760				-0.605						
Mean May	-13.129	1.162	2.893		.704				3.608				
Mean June	-18.605	.680	3.422	0.744	.992				5.606				
Mean July	-24.102		3.046	1.827	1.572				7.848				
Mean August	-7.6 3 6			1.598	1.314	2.869		0.591					
Mean September	-6.790			1.249	1.078	2.741		.692					
Mean October	-28.898		3.203	1.836	1.677				10.099				
Mean November	-12.980	1.683	2.690	962	.710				3.667				
Mean December	-3.529	1.104	2.342		.267		528						
2-year flood	.076	.425		.850		1.363							
5-vear flood	.805	.580		.634		1.134							
10-year flood	.272	.679	.780	.557		.643							
25-year flood	.371	.989	1.331										
50-year flood	.995	.935	1.071										
l-day, 2-year high	-8.299	1.016	2.309					209	3.246				
3-day, 2-year high	-9.345	1.018	2.669					199	3.415				
7-day, 2-year high	-10.027	1.008	2.876					170	3.506				
15-day, 2-year high	-10.514	1.012	3.077					135	3.495				
1-day, 50-year high	-2.763	1.141	.779				1.738						
3-day, 50-year high	-2.166	1.082	.848				1.303						
7-day, 50-year high	888	1.019	1.626										
15-day, 50-year high	-1.355	1.002	1.817										

RELATION TO RECHARGE BASINS

This study has developed relations to allow the estimation of many streamflow characteristics for any stream site within the Pacific drainage of the eastern San Gabriel Mountains or the San Bernardino Mountains of southern California. Even though the errors involved in some of these estimations are quite large, the relations are probably the best presently available. When more data are obtained or new techniques are evolved, better relations may be possible.

Many of these relations have a direct application to the study by Moreland (1972) on artificial recharge in the upper Santa Ana Valley. In the selection of possible alternative locations of recharge basins, the quantity of water available for recharge is a necessary factor. For locations where no streamflow data have been gathered, the streamflow characteristics, in particular the high-flow volumes, can be determined by the methods outlined in this report. These discharges can then be used in the design and selection of the recharge basins.

SELECTED REFERENCES

- Benson, M. A., 1962, Factors influencing the occurrence of floods in a humid region of diverse terrain: U.S. Geol. Survey Water-Supply Paper 1580-B, 64 p.
- _____1964, Factors affecting the occurrence of floods in the Southwest: U.S. Geol. Survey Water-Supply Paper 1580-D, 72 p.
- Burnham, W. L., and Dutcher, L. C., 1960, Geology and ground-water hydrology of the Redlands-Beaumont area, California, with special reference to ground-water outflow: U.S. Geol. Survey open-file rept., 352 p.
- Chow, V. T., Ed., 1964, Handbook of applied hydrology: New York, McGraw-Hill Book Co., 1418 p.
- Crippen, J. R., and Beall, R. M., 1970, A proposed streamflow data program for California: U.S. Geol. Survey open-file rept., 46 p.
- Dutcher, L. C., and Garrett, A. A., 1963, Geologic and hydrologic features of San Bernardino area, California, with special reference to underflow across the San Jacinto fault: U.S. Geol. Survey Water-Supply Paper 1419, 114 p.
- Lee, C. H., 1912, Subterranean storage of flood waters by artificial methods in San Bernardino Valley, California: Sacramento, Calif., Conserv. Comm. of Calif. rept. for 1912, p. 335-400.
- Linsley, R. K., Kohler, M. A., and Paulhus, J. L. H., 1949, Applied hydrology: New York, McGraw-Hill Book Co., 689 p.
- Lippincott, J. B., 1902a, Development and application of water near San Bernardino, Colton, and Riverside, California, Part 1: U.S. Geol. Survey Water-Supply Paper 59, p. 1-95.
- _____1902b, Development and application of water near San Bernardino, Colton, and Riverside, California, Part 2: U.S. Geol. Survey Water-Supply Paper 60, p. 97-141.
- Mendenhall, W. C., 1905, The hydrology of San Bernardino Valley, California: U.S. Geol. Survey Water-Supply Paper 142, 124 p.
- Moreland, J. A., 1972, Artificial recharge in the upper Santa Ana Valley, southern California: U.S. Geol. Survey open-file rept., 51 p.
- Thomas, D. M., and Benson, M. A., 1970, Generalization of streamflow characteristics from drainage-basin characteristics: U.S. Geol. Survey Water-Supply Paper 1975, 55 p.

- Troxell, H. C., 1953, The influence of ground-water storage on the runoff in the San Bernardino and eastern San Gabriel Mountains of southern California: Am. Geophys. Union Trans. v. 34, no. 4, p. 552-562.
- Troxell, H. C., and others, 1942, Floods of March 1938 in southern California: U.S. Geol. Survey Water-Supply Paper 844, 399 p.
- _____1954, Hydrology of the San Bernardino and eastern San Gabriel Mountains, California: U.S. Geol. Survey Hydrol. Inv. Atlas HA-1, 13 sheets.
- U.S. Geological Survey, 1960, Compilation of records of surface waters of the United States through September 1950, parts 10 and 11-A: U.S. Geol. Survey Water-Supply Papers 1314, 1315-B.
- ______1963, Compilation of records of surface waters of the United States, October 1950 to September 1960, parts 10 and 11: U.S. Geol. Survey Water-Supply Papers 1734, 1735.
- _____1970, Surface-water supply of the United States, 1961-65, parts 10 and 11: U.S. Geol. Survey Water-Supply Papers 1927, 1928.
- U.S. Weather Bureau, 1956, Rainfall intensities for local drainage design in western United States: U.S. Weather Bureau Tech. Paper 28, 48 p.
- _____1959, Evaporation maps for the United States: U.S. Weather Bureau Tech. Paper 37, 13 p.
- Waananen, A. O., 1969, Floods of January and February 1969 in central and southern California: U.S. Geol. Survey open-file rept., 233 p.
- Water Resources Council, 1967, A uniform technique for determining floodflow frequencies: Bull. 15, 15 p.
- Water Resources Engineers, Inc., 1969, An investigation of salt balance in the upper Santa Ana River basin: Walnut Creek, Calif., 198 p.

APPENDIX A

SAMPLE SOLUTIONS OF EQUATIONS

Because of the complexity of the use of the equations, several sample solutions are presented. The first example is to determine the 3-day, high-flow, volume-frequency curve for East Twin Creek near Arrowhead Springs, Calif., at the Geological Survey gaging station.

The San Bernardino North, Calif., and Harrison Mountain, Calif., Geological Survey topographic maps, scale 1:24,000, were used to determine the basin characteristics for this site. The drainage area above this site was planimetered and determined to be 8.80 square miles. The annual precipitation was determined from figure 2 as 27 inches. The channel length as measured on the topographic maps was 5.3 miles. From the topographic maps the elevation at the 10-percent point (0.53 mile) was 1,800 feet and the elevation at the 85-percent point (4.51 miles) was 4,840 feet. This gave a fall of 3,040 feet in 3.98 miles or a slope of 764 feet per mile. precipitation intensity was determined from figure 5 as 4.5 inches. determining the forest cover, it was easier to measure the one small clear area on the San Bernardino North map and the several areas on the Harrison Mountain map and subtract from the total drainage area. This gave a forest cover area of 8.53 square miles or 97 percent. Adding the 1 percent gives a forest cover of 98 percent. The area at an elevation greater than 5,000 feet was planimetered to be 0.59 square mile or 6.7 percent. Adding the 1 percent gives a factor of 7.7 percent. The evapotranspiration was determined from figure 6 as 60 inches. Table Al is a summary of these characteristics with the logarithmic values needed for the solution.

TABLE A1.--Basin characteristics for East Twin Creek near Arrowhead Springs, Calif.

Symbo1	Characteristic	Value	Log value
А	Drainage area	8.80	0.944
P	Mean annual precipitation	27	1.431
L	Main-channel length	5.3	.725
S	Main-channel slope	764	2.883
\mathcal{I}	2-year, 24-hour precipitation intensity	4.5	.653
F	Percentage of area forest covered + 1 percent	98	1.991
E	Percentage of area at elevation >5,000 feet + 1 percent	7.7	.886
T	Mean annual potential evapotranspiration	60	1.778

The equation for the maximum 3-day, 2-year high flow $(V_3, 2)$ with the coefficients from table 4 is

 $\log V_{3,2} = -9.345 + 1.018 \log A + 2.669 \log P - 0.199 \log E + 3.415 \log T$

Adding the logarithms of the basin characteristics gives

$$\log V_{3,2} = -9.345 + 1.018 \times 0.944 + 2.669 \times 1.431$$

- 0.199 x 0.886 + 3.415 x 1.778.

Solving this equation, $\log V_{3,2}=1.332$ and its antilog $V_{3,2}=21.5$ cfs (cubic feet per second). Similarly, calculation of the 3-day, 50-year high flow ($V_{3,50}$) would be as follows:

 $\log \ V_{3,50} = -2.166 \, + \, 1.082 \, \log \, A \, + \, 0.848 \, \log \, P \, + \, 1.303 \, \log \, F$ and

 $\log V_{3,50} = -2.166 + 1.082 \times 0.944 + 0.848 \times 1.431 + 1.303 \times 1.991.$

As above, $\log V_{3,50} = 2.665$ and its antilog $V_{3,50} = 462$ cfs. If either the total frequency curve or any other frequencies are desired, the above 2-year and 50-year results should be plotted on logarithmic probability paper and the desired results determined by linear interpolation. Figure Al is such a plot for East Twin Creek near Arrowhead Springs, Calif.

The second example is to determine the January and February monthly and the annual mean flow for Deer Canyon Creek near Etiwanda, Calif. The site is at the frontline fire road crossing found on the Cucamonga Peak, Calif., topographic map. The drainage area above this site was 3.72 square miles. The annual precipitation from figure 2 was 35 inches. The channel length was found to be 4.1 miles. The elevation at the 10-percent point (0.41 mile) was 2,895 feet, and the 85-percent point (3.52 miles) was 6,820 feet. This gave a fall of 3,925 feet in 3.11 miles or a slope of 1,262 feet per mile. The precipitation intensity from figure 5 was 6.0 inches. The forest area was determined as 3.49 square miles or 94 percent. Adding the 1 percent gave a forest cover of 95 percent. The area above the 5,000-foot elevation was 2.49 square miles or 67 percent. The percentage at an elevation greater than 5,000 feet was thus 68 percent. The evapotranspiration from figure 6 was 63 inches. Table A2 summarizes these data.

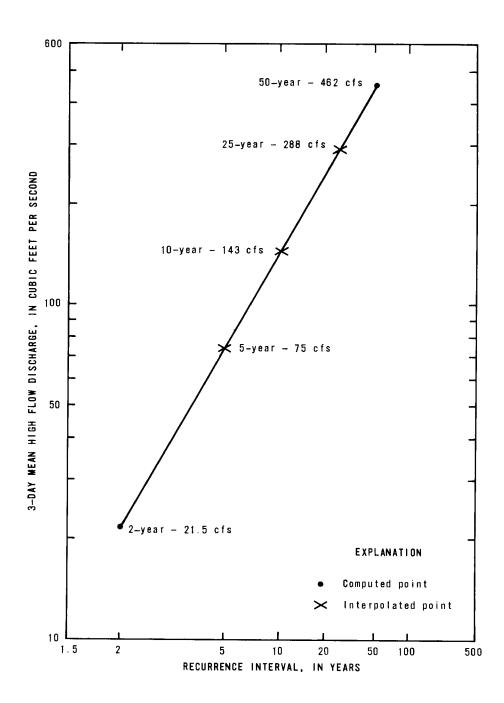


FIGURE Al.--Three-day mean high flow frequency curve for East Twin Creek near Arrowhead Springs, California.

TABLE A2. -- Basin characteristics for Deer Canyon Creek near Etiwanda, Calif.

Symbol	Characteristic	Value	Log value
А	Drainage area	3.72	0.571
P	Mean annual precipitation	35	1.544
L	Main-channel length	4.1	.617
${\mathcal S}$	Main-channel slope	1,262	3.101
I	2-year, 24-hour precipitation intensity	6.0	.778
F	Percentage of area forest covered + 1 percent	95	1.978
E	Percentage of area at elevation >5,000 feet + 1 percent	68	1.833
T	Mean annual potential evapotranspiration	63	1.799

The equation for the mean annual flow ${\it Q}_{\alpha}$ with the coefficients from table 4 is

$$\log Q_{\alpha} = -8.724 + 1.024 \log A + 2.349 \log P + 0.317 \log S + 2.271 \log T$$
.

Adding the logarithms of the basin characteristics gives

$$\log Q_{\alpha} = -8.724 + 1.024 \times 0.571 + 2.349 \times 1.544 + 0.317 \times 3.101 + 2.271 \times 1.799.$$

Solving this equation gives $\log Q_{\alpha}=0.556$ and its antilog $Q_{\alpha}=3.60$ cfs. The equations for the January and February mean monthly flows q_n with their coefficients from table 4 are

$$\log q_1 = -7.544 + 0.909 \log A + 2.717 \log P + 1.905 \log T$$

$$\log q_2 = -2.796 + 1.036 \log A + 1.437 \log P + 0.790 \log I$$
.

Adding the logarithms of the basin characteristics gives

$$\log q_1 = -7.544 + 0.909 \times 0.571 + 2.717 \times 1.544 + 1.905 \times 1.799$$

$$\log q_2 = -2.796 + 1.036 \times 0.571 + 1.437 \times 1.544 + 0.790 \times 0.778.$$

Solving these equations gives

$$\log q_1 = 0.597 \text{ and } q_1 = 4.0 \text{ cfs}$$

$$\log q_2 = 0.629$$
 and $q_2 = 4.3$ cfs.

APPENDIX A 33

Whenever a group of values are computed together, answers should be examined for consistency. In this example, if all 12 months had been solved for, and if several values appeared to be a little high when compared with the remainder of the months and the normal expected annual cycle, these could be adjusted. These adjustments normally, however, would be well within the accuracy limits of the equations.

The next example will be to solve for the flood-frequency curve for Deer Canyon Creek near Etiwanda, Calif. The basic characteristics were determined in the previous example (table A2).

The equations for the five flood-frequency characteristics from table 4 are

$$\log P_2 = 0.076 + 0.425 \log A + 0.850 \log L + 1.363 \log I$$

$$\log P_5 = 0.805 + 0.580 \log A + 0.634 \log L + 1.134 \log I$$

$$\log P_{10} = 0.272 + 0.679 \log A + 0.780 \log P + 0.557 \log L + 0.643 \log I$$

$$\log P_{25} = 0.371 + 0.989 \log A + 1.331 \log P$$

$$\log P_{50} = 0.995 + 0.935 \log A + 1.071 \log P$$
.

Adding the logarithms of the basin characteristics gives

$$\log P_2 = 0.076 + 0.425 \times 0.571 + 0.850 \times 0.617 + 1.363 \times 0.778$$

$$log P_5 = 0.805 + 0.580 \times 0.571 + 0.634 \times 0.617 + 1.134 \times 0.778$$

$$\log P_{10} = 0.272 + 0.679 \times 0.571 + 0.780 \times 1.544 + 0.557 \times 0.617$$

+ 0.643 x 0.778

$$\log P_{25} = 0.371 + 0.989 \times 0.571 + 1.331 \times 1.544$$

$$\log P_{50} = 0.995 + 0.935 \times 0.571 + 1.071 \times 1.544$$

Solving these gives

$$log P_2 = 1.904$$
 and $P_2 = 80$ cfs

$$\log P_5 = 2.410$$
 and $P_5 = 257$ cfs

$$\log P_{10} = 2.708$$
 and $P_{10} = 510$ cfs

$$\log P_{25} = 2.991$$
 and $P_{25} = 979$ cfs

$$\log P_{50} = 3.183$$
 and $P_{50} = 1,520$ cfs.

The last example will be to determine the 100-year flood for Deer Canyon Creek. To determine the 100-year flood requires computation of the five flood-frequency points and an extrapolation to the 100-year value. From the previous example, these values are

 $P_{2} = 80 \text{ cfs}$

 $P_5 = 257 \text{ cfs}$

 $P_{10} = 510 \text{ cfs}$

 $P_{25} = 979 \text{ cfs}$

 $P_{50} = 1,520 \text{ cfs}$

These values are plotted on logarithmic probability paper as shown in figure A2. From this curve, the 100-year flood is determined as 2,250 cfs.

Similarly, any of the other flow characteristics can be computed. By using the relations expressed by the equations, or the coefficients in table 4, estimates of virtually any needed streamflow characteristic can be computed for any site or streams tributary to the Pacific Ocean within the eastern San Gabriel Mountains or San Bernardino Mountains.

Appendix B is a tabulation of the eight basin characteristics for the 35 stations used to develop the set of basic equations.

Appendix C is a tabulation of the 26 flow characteristics computed from the regression equations for the 35 stations used in the analysis.

Appendix D is a summary by station of the 26 flow characteristics computed from the regression equations and the basin characteristics.

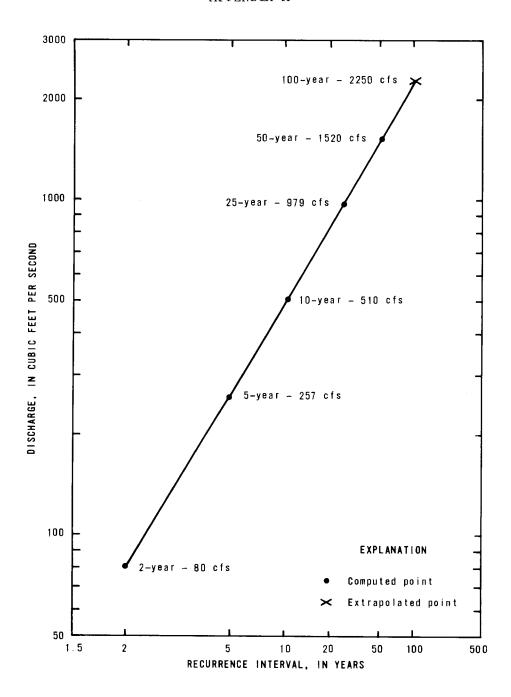


FIGURE A2.--Flood-frequency curve for Deer Canyon Creek near Etiwanda, California.

APPENDIX B

BASIN CHARACTERISTICS FOR STATIONS USED IN ANALYSIS

Station number	Name	Area (sq mi) A	Annual precipitation (inches)	Channel length (miles) L	Channel slope (ft/mi) S	Precipitation intensity (in/hr)	Forest cover (percent) F	Elevation >5,000 ft. (percent) E	Evapotranspiration (inches) T
10256000	Whitewater River at White Water	57.4	26	17.4	418	3.3	84	67	58.5
10256500	Snow Creek near White Water	10.8	29	4.3	1,672	3.1	89	71	58
10258000	Tahquitz Creek near Palm Springs	16.8	24	9.3	878	3.0	90	75	59
10258500	Palm Canyon Creek near Palm Springs	93.3	10	20.8	231	1.9	44	38	63
10260500	Deep Creek near Hesperia	136	24	24.8	183	5.1	80	77	7 2
10261000	West Fork Mojave River near Hesperia	74.6	24	12.9	81.4	4.8	89	28	72
10263500	Big Rock Creek near Valyermo	22.9	23	7.1	409	5.0	96	87	7 2
10264000	Little Rock Creek near Little Rock	49.0	21	14.7	224	2.9	81	61	7 2
11054000	Mill Creek near Yucaipa	38.1	3 0	16.6	420	4.5	98	81	58.5
11055500	Plunge Creek near East Highlands	16.9	3€	8.5	478	4.5	99	24	59
11055800	City Creek near Highland	19.6	32	8.8	359	4.5	100	23	60
		3.23	30	3.0	1,036	4.0	99	73	57
	Little San Gorgonio Creek near Beaumont San Timoteo Creek near Redlands	119	17	19.0	210	4.5	66	4.3	55
11057000		8.80	27	5.3	764	4.5	98	7.7	60
11058500	East Twin Creek near Arrowhead Springs	4.65	35	3.6	622	5.0	101	1.0	60
11058600	Waterman Canyon Creek near Arrowhead Springs	46.3	33	15.1	335	6.0	94	69	72
11062000	Lytle Creek near Fontana		19	13.6	174	6.0	99	13	72
11063000	Cajon Creek near Keenbrook	40.6		11.0	366	6.0	99	45	72
11063500	Lone Pine Creek near Keenbrook	15.1	19	3.9	801	6.0	99	3.9	60
11063680		5.61	26	4.2	1.466	6.0	97	63	57
11067000		4.59	35		722	5.8	99	87	58.5
11073000	San Antonio Creek near Claremont	16.6	34	6.1 5.6	810	5.5	100	51	57.5
11073470		10.1	35		330	6.0	95	31	72
11080500	East Fork San Gabriel River near Camp Bonita	84.6	31	16.6		7.0	101	1.0	57
11084000	Rogers Creek near Azusa	6.64	30	5.8	375	6.0	101	1.0	56
11084500		6.36	30	6.0	511			1.0	57
11086500		2.72	29	3.6	524	6.0	101		57 59
1109 3000	Pacoima Creek near San Fernando	28.5	25	21.4	157	5.0	69	11 38	70
11094000	Tujunga Creek below Mill Creek, near Colby Ramch	64.9	24	13.8	100	5.0	101		
11094500		67.5	28	21.8	101	5.0	99	38	69
11095500		106	29	25.4	109	5.0	99	30	66
11096500		21.1	27	6.5	212	5.0	92	1.0	57
	Arroyo Seco near Pasadena	16.6	28	11.5	235	6.0	100	12	57
11100000		9.7	33	4.6	671	7.0	101	5.4	58. 5
11100500	Little Santa Anita Creek near Sierra Madre	1.84	35	2.2	892	7.0	101	1.5	55
	Eaton Creek near Pasadena	6.47	29	5.8	609	7.0	101	11	55.5

APPENDIX C

FLOW CHARACTERISTICS COMPUTED FROM REGRESSION EQUATIONS FOR STATIONS USED IN ANALYSIS

[Discharges in cubic feet per second]

Station number	Mean annual	Mean Jan.	Mean Feb.	Mean Mar.	Mean Apr.	Mean May	Mean June	Mean Julv	Mean Aug.	Mean Sept.	Mean Oct.	Mean Nov.	Mean Dec.
													2001
10256000	17.6	18.4	29.5	32.5	36.0	17.0	7.3	2.9	2.3	1.9	1.4	8.6	25.7
10256500	6.3	5.3	5.8	6.3	8.3	8.6	4.5	2.6	1.3	1.3	1.5	6.9	7.4
10258000	5.3	4.9	6.8	7.2	7.7	5.6	3.3	2.5	1.8	1.6	1.3	2.8	6.5
10258500	3.0	2.5	8.0	7.6	6.3	1.6	• 4	. 2	• 2	• 2	.1	1.1	5.6
10260500	43.5	48.3	90.5	105	72.9	43.4	18.3	6.1	5.1	4.3	4.3	25.1	45.5
10261000	18.2	28.0	46.3	53.0	36.6	12.2	3.4	• 5	.3	• 3	.3	9.6	17.9
10263500	8.2	8.5	13.2	14.8	9.1	8.5	4.1	1.9	2.0	2.2	1.5	6.6	6.5
10264000	11.9	13.3	16.6	17.7	17.3	10.4	4.8	2.1	.5	•5	1.5	6.0	11.3
11054000	16.2	18.7	30.2	34.7	31.8	16.0	8.7	4.2	5.8	4.7	2.1	6.7	21.1
11055500	7.5	9.1	13.0	14.7	13.6	7.0	3.6	1.6	1.1	1.0	. 8	3.6	8.9
11055800	9.6	12.8	16.7	19.0	18.8	8.7	4.3	1.5	.8	.8	.8	4.7	11.2
11056500	1.6	1.9	2.1	2.3	2.4	1.6	1.0	.6	.8	1.0	. 3	• 9	1.8
11057000	9.6	10.0	43.5	48.1	27.5	5.7	1.1	. 2	.5	.3	.1	4.2	20.1
11058500	2.2	3.9	5.7	6.3	5.2	1.2	. 4	.1	.1	.1	.0	.7	2.5
11058600	3.2	4.4	4.6	5.3	5.4	3.1	1.9	•9	.1	•1	• 5	1.8	3.2
11062000	36.9	43.1	53.3	63.8	52.0	47.7	33.0	16.7	7.7	6.5	13.2	23.8	31.5
11063000	7.2	8.5	21.0	23.7	9.6	5.2	2.2	• 9	1.0	• 9	.6	3.0	6.1
11063500	3.3	3.5	7.5	8.4	3.4	2.8	2.0	2.0	4.0	3.6	1.5	1.2	2.5
11063680	2.1	2.3	4.2	4.8	2.9	2.0	1.1	.6	• 5	• 4	. 4	1.3	2.2
11067000	3.7	4.0	5.3	6.1	5.4	4.7	3.8	3.1	6.5	6.0	1.7	2.4	4.1
11073000	11.0	12.4	18.7	22.0	18.8	12.8	6.2	2.3	5.1	5.1	1.2	8.9	13.0
11073470	7.1	8.2	11.2	13.0	12.1	8.0	4.7	2.2	3.3	3.1	1.2	4.6	8.3
11080500	58.8	62.8	90.9	109	81.3	79.3	42.4	16.0	5.5	4.1	12.6	50.2	52.5
11084000	2.5	3.6	7.0	8.1	5.1	1.8	.9	. 4	• 2	• 2	• 2	. 8	2.9
11084500	2.5	3.4	5.9	6.8	4.9	2.0	1.2	. 6	. 3	• 2	. 3	. 9	3.0
11086500	1.0	1.5	2.3	2.6	1.8	. 7	• 4	. 3	.1	.1	.1	. 3	1.1
11093000	5.9	8.9	18.7	21.2	17.6	3.5	1.8	. 9	1.0	.8	•4	1.0	9.3
11094000	15.8	23.3	41.4	47.4	29.4	10.8	3.4	.6	.6	.6	. 4	7.5	15.1
11094500	22.9	35.8	53.8	62.7	47.4	16.9	7.7	2.2	1.2	1.1	1.3	7.4	23.0
11095500	36.6	54.5	90.3	106	83.4	28.5	11.0	2.5	1.5	1.3	1.4	13.5	41.9
11096500	5.2	7.8	15.3	17.4	13.4	3.3	.9	. 2	.1.	.0	.1	2.6	7.4
11098000	4.6	6.9	14.5	16.8	11.0	3.0	1.5	.6	1.1	•9	• 2	1.2	6.1
11100000	5.8	7.0	11.9	14.1	9.8	6.0	2.9	1.1	1.0	.8.	.6	4.1	6.5
11100500	1.2	1.6	2.3	2.7	2.1	1.0	.6	.3	• 2	• 2	• 2	.6	1.3
11101000	2.4	3.1	6.5	7.5	4.5	2.0	1.1	• 7	1.9	1.6	.3	.9	3.0

[Discharges in cubic feet per second]

Station number	2-yr. flood	5-yr. flood	10-yr. flood	25-yr. flood	50-yr. flood	1-day 2-yr. high	3-day 2-yr. high	7-day 2-yr. high	15-day 2-y r. high	1-day 50-yr. high	3-day 50-yr. high	7-day 50-yr. high	15-day 50-yr. high
10256000	384	1580	39 30	0060	1/200	100	70.0						
10256500	52 . 9	231	39 30 60 7	9860 2180	14300	129	78.3	50.2	35.4	4900	2780	1600	952
10258000	118	468	1060		3370	29.2	18.4	12.3	8.8	878	540	349	218
10258500	259	1260		2630	4160	30.8	18.2	11.7	8.1	1280	753	402	240
10250500	1360	1200	2010	4470	8090	33.3	14.4	7.5	4.3	1320	901	556	273
10261000	555	5360	10700	20800	29400	490	301	192	134	11300	6020	3390	1950
10261000		2330	4750	11500	16800	330	200	125	84.0	6870	3720	1840	1070
	214	843	1520	3380	5310	70.9	42.7	27.7	19.1	1970	1100	515	303
10264000	261	1120	2500	6350	9800	134	78.0	48.7	32.8	3250	1870	964	551
11054000	473	1720	3960	7950	11400	114	72.8	48.5	35.4	4490	2460	1330	818
11055500	190	703	1570	3560	5310	65.9	41.7	27.1	18.9	1810	1040	582	362
11055800	208	784	1860	4490	6540	94.8	61.5	40.5	28.6	2290	1300	752	473
11056500	33.0	122	265	69.3	1130	8.7	5.5	3.7	2.7	274	173	108	69.0
11057000	862	36 30	5930	11500	17900	147	74.0	39.6	23.4	5320	3120	1690	913
11058500	96.2	357	713	1620	2580	35.7	21.5	13.3	8.7	777	462	252	156
11058600	61.0	217	488	1220	1870	52.0	33.7	20.9	13.4	484	300	201	132
11062000	702	2520	5550	10900	15100	350	240	165	122	5620	3120	1900	1180
11063000	608	2180	3110	4610	7390	121	67.1	39.3	24.5	3440	1820	677	380
11063500	333	1080	1410	1730	2930	34.3	19.1	11.7	7.6	1110	623	247	141
11063680	90.6	314	517	989	1620	23.8	14.1	8.5	5.4	459	278	150	92.6
11067000	88.6	293	593	1200	1850	18.3	12.2	8.5	6.3	445	281	198	130
11073000	201	752	1670	41.30	59 70	64.2	43.0	29.7	22.3	1950	1130	701	447
11073470	141	503	1120	2630	3870	43.8	29.4	20.2	14.9	1150	686	443	286
11080500	984	3790	8390	18300	24800	661	440	290	207	10800	5770	3170	1930
11084000	168	530	893	1410	2220	44.3	27.0	16.1	10.0	645	387	224	142
11084500	138	443	801	1350	2130	40.0	24.3	14.5	9.0	614	369	215	
11086500	62.3	196	330	559	928	16.5	9.9	5.9	3.7	227	143	85.6	136
11093000	600	1930	3470	4680	7120	86.6	51.0	31.0	20.3	1520	976		54.7
11094000	586	2350	4610	10000	14700	244	148	93.2	63.4	7300		737	439
11094500	879	3220	6880	12800	18000	347	221	144	101	8320	3770	1600	930
11095500	1210	4600	10500	20900	28500	541	346	223			4370	2130	1280
11096500	192	761	1550	3850	5840	112	66.0		157	14300	7340	3580	2150
11098000	360	1170	2090	3190	4850	57 . 0		38.1	23.3	1890	1100	615	374
11100000	162	570	1090	2340	3500		34.8	21.8	14.6	1710	971	511	314
11100500	42.8	136	246			62.1	40.0	25.5	17.2	1070	633	386	247
11101000	166	522	855	488 1320	788 2090	14.1 22.2	9.0 13.6	5.7 8.6	3.7 5.8	168 610	110 366	78.1 207	52.0 130

APPENDIX D

100

SUMMARY OF CHARACTERISTICS BY STATION

10256000 WHITEWATER RIVER AT WHITE WATER, CALIF.

Location.—Lat 33°56'48", long 116°38'24", in NW4NW4NE4 sec. 2, T. 3 S., R. 3 E., Riverside County, on right bank 1.5 miles north of White Water and 3.5 miles upstream from San Gorgonio River. Prior to Oct. 1, 1969, at site 1.5 miles downstream.

Area (A), square miles 57.4 Annual precipitation (P),	Basin characteristics		Mean flow
Annual precipitation (P),			(cubic feet per second)
in inches 26 Channel length (L), in February 29.5 miles 17.4 Channel slope (S), in feet April 36.0 per mile 418 Precipitation intensity June 7.3 (I), in inches per hour 3.3 Forest cover (F), in percent 84 Elevation greater than September 1.9 5,000 feet (E), in percent 67 Evapotranspiration (T), in November 8.6 inches 58.5 Flood-volume frequency (average cubic feet per second for period) 2-year 384 5-year 1,580 January 18.4 February 29.5 March 32.5 April 36.0 April 36	Area (A), square miles	57.4	•
in inches 26 Channel length (L), in February 29.5 miles 17.4 Channel slope (S), in feet April 36.0 per mile 418 Precipitation intensity June 7.3 (I), in inches per hour 3.3 Forest cover (F), in percent 84 Elevation greater than September 1.9 5,000 feet (E), in percent 67 Evapotranspiration (T), in inches 58.5 Flood frequency (cubic feet per second)	Annual precipitation (P),		Annual 17.6
miles 17.4 March 32.5 Channel slope (S), in feet April 36.0 per mile 418 May 17.0 Precipitation intensity June 7.3 (I), in inches per hour 3.3 July 2.9 Forest cover (F), in percent 84 August 2.3 Elevation greater than September 1.9 5,000 feet (E), in percent 67 October 1.4 Evapotranspiration (T), in November 8.6 inches 58.5 December 25.7 Flood frequency (cubic feet per second) 2-year 384 5-year 1,580 2-year 50-year	in inches	26	January 18.4
Channel slope (S), in feet April 36.0 per mile 418 May 17.0 Precipitation intensity June 7.3 (I), in inches per hour 3.3 July 2.9 Forest cover (F), in percent 84 August 2.3 Elevation greater than September 1.9 5,000 feet (E), in percent 67 October 1.4 Evapotranspiration (T), in inches November 8.6 inches 58.5 December 25.7 Flood-volume frequency (cubic feet per second) (average cubic feet per second for period) 2-year 384 5-year 1,580 2-year 50-year	Channel length (L) , in		February 29.5
per mile 418 May 17.0 Precipitation intensity June 7.3 (I), in inches per hour 3.3 July 2.9 Forest cover (F), in percent 84 August 2.3 Elevation greater than September 1.9 5,000 feet (E), in percent 67 October 1.4 Evapotranspiration (T), in inches November 8.6 inches 58.5 December 25.7 Flood-volume frequency (average cubic feet per second for period) (average cubic feet per second for period) 2-year 384 5-year 1,580 2-year 50-year	miles	17.4	March 32.5
Precipitation intensity (I), in inches per hour 3.3 Forest cover (F), in percent 84 Elevation greater than September 1.9 5,000 feet (E), in percent 67 Evapotranspiration (T), in November 8.6 inches 58.5 Flood frequency (cubic feet per second) 2-year 384 5-year 1,580 July 2.9 August 2.3 November 1.9 October 1.4 November 8.6 inches 58.5 Flood-volume frequency (average cubic feet per second for period) 2-year 50-year	Channel slope (S) , in feet		April 36.0
(I), in inches per hour 3.3 Forest cover (F), in percent 84 Elevation greater than September 1.9 5,000 feet (E), in percent 67 Evapotranspiration (T), in November 8.6 inches 58.5 Flood frequency (cubic feet per second) Cubic feet per second) 2-year 384 5-year 1,580 July 2.9 August 2.3 Rugust 2.3 Elevation greater than September 1.9 November 8.6 Evapotranspiration (T), in November 25.7	per mile	41 8	May 17.0
Forest cover (F), in percent 84 Elevation greater than September 1.9 5,000 feet (E), in percent 67 Evapotranspiration (T), in November 8.6 inches 58.5 Flood frequency (cubic feet per second) 2-year 384 5-year 1,580 August 2.3 August 2.3 Evapotrable frequency (october 1.4 November 8.6 (average cubic feet per second for period) 2-year 384 2-year 50-year	Precipitation intensity		
Elevation greater than 5,000 feet (E), in percent 67 Cvapotranspiration (T), in inches Flood frequency (cubic feet per second) 2-year 384 5-year 1,580 September 1.9 October 1.4 November 8.6 inches Flood-volume frequency (average cubic feet per second for period) 2-year 50-year	(I), in inches per hour 3.3		J
5,000 feet (E), in percent 67 October 1.4 Evapotranspiration (T), in November 8.6 inches 58.5 December 25.7 Flood frequency (cubic feet per second) 2-year 384 5-year 1,580 2-year 50-year	Forest cover (F) , in percent 84		August 2.3
Evapotranspiration (T), in November 8.6 inches 58.5 December 25.7 Flood frequency (cubic feet per second) (average cubic feet per second for period) 2-year 384 5-year 1,580 2-year 50-year	Elevation greater than		September 1.9
Flood frequency (cubic feet per second) 2-year 384 5-year 1,580 December 25.7 Flood-volume frequency (average cubic feet per second for period) 2-year 50-year	5,000 feet (E) , in percent	67	October 1.4
Flood frequency (cubic feet per second) (average cubic feet per second for period) 2-year 384 5-year 1,580 2-year 50-year	Evapotranspiration (T) , in		November 8.6
(cubic feet per second) (average cubic feet per second for period) 2-year 384 5-year 1,580 2-year 50-year	inches	58.5	December 25.7
(cubic feet per second) (average cubic feet per second for period) 2-year 384 5-year 1,580 2-year 50-year	Flood frequency		Flood-volume frequency
for period) 2-year 384 5-year 1,580 2-year 50-year			
5-year 1,580 2-year 50-year	(00010 1001 }11 000000)		· · · · · · · · · · · · · · · · · · ·
- ,	2-year 384		
10-year 3,930	5-year 1,580		2-year 50-year
<i>J</i>	10-year 3,930		

1-day

3-day

7-day

15-day

·129

78.3

50.2 35.4

25-year

50-year

¹100-year

9,860

14,300

25,000

4,900

2,780

1,600

952

¹From curve drawn from other frequency points.

10256500 SNOW CREEK NEAR WHITE WATER, CALIF.

Location.--Lat 33°52'12", long 116°40'49", in SE'4NW 4NW 4 sec. 33, T. 3 S., R. 3 E., Riverside County, on left bank 50 feet upstream from Southern Pacific Railroad diversion dam, 500 feet downstream from unnamed tributary, 2.8 miles upstream from mouth, and 4.5 miles southwest of White Water.

Basin characteristics		Mean flow				
·		(cub:	c feet	per second)		
Area (A) , square m	iles 10.8					
Annual precipitati	on (P),	Annual				
in inches	29	Janua	iry	5.3		
Channel length (L)	, in	Febru	ıary	5.8		
miles	4.3	March	1	6.3		
Channel slope (S), in feet		Apri.	L	8.3		
per mile	1,672	May		8.6		
Precipitation inte		June		4.5		
(I), in inches p		July		2.6		
Forest cover (F) , in percent 89		August				
Elevation greater than		Septe	ember	1.3		
5,000 feet (E), in percent 71		Octol		1.5 6.9		
Evapotranspiration		November				
inches	58	Decer	ıber	7.4		
Flood fre	quency	Flood-volume frequency				
(cubic feet p	er second)	(average cul	ic feet	per second		
		fe	or perio	od)		
2-year	52.9					
5-year	231		2-year	50 - year		
10-year	607					
25 - yea r	2,180	1 - day	29.2			
50-year	3,370	3-day	18.4			
¹ 100 - year	7,800	7-day	12.3			
		15-day	8.8	3 218		

 $^{^{\}rm l} \, {\rm From} \,$ curve drawn from other frequency points.

10258000 TAHQUITZ CREEK NEAR PALM SPRINGS, CALIF.

Location.--Lat 33°48'18", long 116°33'30", in NE4SW4SW4 sec. 22, T. 4 S., R. 4 E., Riverside County, on left bank 2.2 miles southwest of Palm Springs and 7 miles upstream from mouth.

Basin characteristics			Mean fl	WO.			
		(c	ubic feet pe	r second)			
Area (A) , square miles	16.8		•	•			
Annual precipitation (P)	•	An	nual	5.3			
in inches	24	Ja	nuary	4.9			
Channel length (L) , in			bruary	6.8			
miles	9.3		rch	7.2			
Channel slope (S), in fe	et	Ар	ril	7.7			
per mile	37 8	Ma		5.6			
Precipitation intensity			ne	3.3			
(I), in inches per hour 3.0		Ju	July				
Forest cover (F) , in percent 90			August				
Elevation greater than			ptember	1.8 1.6			
5,000 feet (E), in percent 75			tober	1.3			
Evapotranspiration (T),		No	November				
inches	 59		December				
			00502	6.5			
Flood frequency		Flood	Flood-volume frequency				
(cubic feet per sec	ond)	(average	cubic feet p				
2-year	118		•				
•	468		2-year	50-year			
•	060		•				
•	6 3 0	1-day	30.8	1,280			
•	160	3 - day	18.2	753			
, ,	000	7 - day	11.7	402			
		15 - day	8.1	240			

¹From curve drawn from other frequency points.

10258500 PALM CANYON CREEK NEAR PALM SPRINGS, CALIF.

Location.--Lat 33°44'42", long 116°32'05", in NEWSWSEK sec. 11, T. 5 S., R. 4 E., Riverside County, on right bank 0.8 mile upstream from Murray Canyon Creek and 6 miles south of Palm Springs.

Basin characteristics		Mean flow				
		(cubic	feet	per second)		
Area (A), square miles	93.3			,		
Annual precipitation (P) ,		Annual	Annual			
in inches	10	January	ÿ	3.0 2.5		
Channel length (L) , in		Februar	-	8.0		
miles	20.8	March	,	7.6		
Channel slope (S) , in feet		April	Ap ril			
per mile	231	May		6.3 1.6		
Precipitation intensity		June		.4		
(I), in inches per hour 1.9		July		.2		
Forest cover (F) , in percent		August	August			
Elevation greater than		Septeml	ber	.2 .2		
5,000 feet (E), in percent 38		October	r	.1		
Evapotranspiration (T) , in		Novembe	November 1			
inches	63	Decembe	e r	5.6		
Flood frequency		Flood-volu	Flood-volume frequency			
(cubic feet per second)		(average cubic				
			perio			
2 - year 259			-			
5-year 1,260		2	2-year	50-year		
10-year 2,010				•		
25-year 4,470		l-day	33.3	1,320		
50-year 8,090		3-day	14.4	901		
¹ 100-year 9,500		7 - day	7.5	556		
		15-day	4.3	273		

¹From curve drawn from other frequency points.

10260500 DEEP CREEK NEAR HESPERIA, CALIF.

Location.--Lat 34°20'28", long 117°13'39", in NW4NE4SE4 sec. 18, T. 3 N., R. 3 W., San Bernardino County, on right bank 0.5 mile upstream from confluence with West Fork Mojave River and 7 miles southeast of Hesperia.

Basin characteristics			Hean flow		
		(cubi	c feet pe	r second)	
Area (A) , square miles	136			43.5	
Annual precipitation (P),		Annua	Annua1		
in inches	24	Janua	ry	48.3	
Channel length (L) , in		Febru	ary	90.5	
miles	24.8	M arc h		195	
Channel slope (S) , in feet		Ap ril		72.9	
per mile	183	llay		43.4	
Precipitation intensity		June		18.3	
(I), in inches per hour	5.1	July		6.1 5.1	
Forest cover (F) , in percent 80		Augus	August		
Elevation greater than		Septe	mber	4.3	
5,000 feet (E), in percent 77		Octob	4.3		
Evapotranspiration (T), in		Noven	25.1		
inches	72	Decem	ıber	45.5	
Flood frequency		Flood-vo	olume freq	uency	
(cubic feet per second	1)	(average cul	oic feet p	er second	
	•	fo	or period)		
2-year 1,3	360				
5-year 5,3			2-year	50 - year	
10-year 10,7	⁷ 00				
25-year 20,8		1-day	490	11,300	
50-year 29,4		3 - day	301	6,020	
¹ 100-year 44,5		7-day	192	3,3 90	
		15-day	134	1,950	

¹From curve drawn from other frequency points.

10261000 WEST FORK MOJAVE RIVER NEAR HESPERIA, CALIF.

Location.--Lat 34°20'27", long 117°14'24", in SW4SW4 sec. 18, T. 3 N., R. 3 W., San Bernardino County, San Bernardino National Forest, on left bank at highway bridge, 0.5 mile upstream from confluence with Deep Creek, and 6.5 miles southeast of Hesperia.

Basin charac	teristics	Mean flow				
•		(cub	ic feet pe	r second)		
Area (A) , square mi	les 74.6					
Annual precipitatio	n (P),	Annu	al	18.2		
in inches	24	Janu	ary	28.0		
Channel length (L),	in	Febr	uary	46.3		
miles	12.9	Marc	h	53.0		
Channel slope (S) ,	in feet	Apri	.1	36.6		
per mile	81.4	May		12.2		
Precipitation inten	sity	June	:	3.4		
(I), in inches pe	r hour 4.8	July				
Forest cover (F) , in percent 89		Augu	August			
Elevation greater than		Sept	ember	.3		
5,000 feet (E), i	n percent 28	October November				
Evapotranspiration	(T), in	November				
inches	72	Dece	mber	17.9		
Flood freq	uency	Flood-volume frequency				
(cubic feet pe	r second)	(average cu	bic feet p	er second		
•		f	or period)			
2-year	555					
5-year	2,330		2-year	50-year		
10-year	4 ,7 50					
25-year	11,500	1-day	330	6,870		
50-year	16,800	3-day	200	3,720		
¹ 100 - year	24,500	7-day	125	1,840		

15-day

84.0

1,070

 $^{^{\}mathrm{l}}$ From curve drawn from other frequency points.

10263500 BIG ROCK CREEK NEAR VALYERMO, CALIF.

Location.--Lat 34°25'15", long 117°50'19", in NW4SE4NE4 sec. 20, T. 4 N., R. 9 W., Los Angeles County, on left bank 0.1 mile upstream from Punchbowl Canyon and 1.9 miles southwest of Valyermo.

Basin charact	eristics	Mean flow			
		(cubi	c feet pe	r second)	
Area (A) , square mil	es 22.9				
Annual precipitation	(P),	Annua	1	8.2	
in inches	23	Janua	ry	8.5	
Channel length (L) ,	in	Febru	ary	13.2	
miles	7.1	March		14.8	
Channel slope (S) , i	n feet	April		9.1	
per mile	409	May		8.5	
Precipitation intens		June		4.1	
(I), in inches per		July		1.9	
Forest cover (F) , in percent 96		Augus		2.0	
Elevation greater th		Septe		2.2	
5,000 feet (E), in		Octob		1.5	
Evapotranspiration (November		6.6	
inches	72	Decen	ber	6.5	
Flood frequ	ency	Flood-vo	lume freq	luency	
(cubic feet per	second)	(average cub	ic feet p r period)		
2-year	214				
5-year	843		2-year	50 - year	
10-year	1,520				
25-year	3,380	1-day	70.9	•	
50-year	5 ,31 0	3-day	42.7		
¹ 100 - year	7, 900	7 - day	27.7	515	
		15 - day	19.1	303	

 $^{^{\}rm 1}{\rm From}$ curve drawn from other frequency points.

10264000 LITTLE ROCK CREEK NEAR LITTLE ROCK, CALIF.

Location.--Lat 34°27'47", long 118°01'04", in SW4SW4NE4 sec. 3, T. 4 N., R. 11 W., Los Angeles County, on right bank 0.3 mile upstream from Santiago Creek, 1.6 miles upstream from Little Rock Palmdale Irrigation District's dam, and 5 miles south of Little Rock.

Basin characteris	tics	Hean fl			
•		(cul	ic feet pe	er second)	
Area (A) , square miles	49.0		_		
Annual precipitation (P)	9	Annu	11.9		
in inches	21	Janu	ary	13.3	
Channel length (L) , in		Febr	uary	16.6	
miles	14.7	Marc	:lı	17.7	
Channel slope (S) , in fe	et	Apri	.1	17.3	
per mile	224	May		10.4	
Precipitation intensity		June	1	4.8	
(I), in inches per hou	r 2.9	July	July		
Forest cover (F), in per	cent 81	Augu	.st	.5	
Elevation greater than		Sept	ember	•5	
5,000 feet (E), in percent 61		Octo	ber	1.5	
Evapotranspiration (T) ,	Evapotranspiration (T) , in			6.0	
inches	72	Dece	mber	11.3	
Flood frequency	•	Flood-v	olume freq	juency	
(cubic feet per sec	cond)	(average cu		er second	
2-year	261				
5-year 1,	120		2-year	50-year	
10-year 2,	500				
25-year 6,	350	1 - day	134	3,25 0	
	800	3 - day	7 8.0	1,870	
¹ 100-year 17,	000	7 - day	48.7	964	
		15-day	32.8	55 1	

¹From curve drawn from other frequency points.

11054000 MILL CREEK NEAR YUCAIPA, CALIF.

Location.--Lat 34°05'27", long 117°02'12", in NW4NE4NE4 sec. 13, T. 1 S., R. 2 W., San Bernardino County, on left bank 50 feet downstream from bridge on State Highway 190-D, 3.9 miles north of Yucaipa, and 5.3 miles upstream from mouth.

Basin characteristics			Mean flow				
			(cubi	c feet p	er second)		
Area (A), square	miles 38.1	L					
Annual precipita	tion (P) ,		Annual 16.				
in inches	30)	Janua	ry	18.7		
Channel length (L), in		Febru	ary	30.2		
miles	16.6	ó	March		34.7		
Channel slope (S), in feet		April		31.8		
per mile	420)	May		16.0		
Precipitation in	tensity		June		8.7		
(I), in inches			Ju l y		4.2 5.8		
Forest cover (F) , in percent 98		8	Augus	August			
Elevation greater than			Septe	mber	4.7		
5,000 feet (E)	, in percent 83	1	Octob	er	2.1 6.7		
Evapotranspirati	on (T) , in		November				
inches	58.	5	Decem	ber	21.1		
Flood f	requency		Flood-volume frequency				
(cubic feet	per second)		(average cub	ic feet r period	_		
2-year	473		10	r period	-/		
5-year	1,720			2-year	50-year		
10-year	3,960			_ /	J J J = ===		
25-year	7 , 950		1-day	114	4,490		
50-year	11,400		3-day	72.8	' - '		
¹ 100-year	17,000		7-day	48.5	_		
100 j 241	,		15-day	35.4	-		

¹From curve drawn from other frequency points.

11055500 PLUNGE CREEK NEAR EAST HIGHLANDS, CALIF.

Location.—Lat 34°07'06", long 117°08'27", in SW4NE4NE4 sec. 1, T. 1 S., R. 3 W., San Bernardino County, on left bank at mouth of canyon at crossing of North Fork ditch siphon, 1.8 miles northeast of East Highlands.

Basin characteristics	s	Hean flow	
		(cubic fee	t per second)
Area (A) , square miles	16.9		
Annual precipitation (P) ,		Annual	7. 5
in inches	3 0	January	9.1
Channel length (L) , in		February	13.0
miles	8.5	March	14.7
Channel slope (S) , in feet		April	13.6
per mile	47 8	Kay	7.0
Precipitation intensity		June	3.6
(I), in inches per hour	4.5	July	1.6
Forest cover (F), in percent	t 99	August	1.1
Elevation greater than		September	1.0
5,000 feet (E), in percent	t 24	October 0	8.
Evapotranspiration (T) , in		November 3.	
inches	59	December	8.9
Flood frequency		Flood-volume	frequency
(cubic feet per second)	(average cubic fe	
		for per	iod)
2-year 190			
5-year 703		2-уе	ar 50-year
10-year 1,570			
25-year 3,560		1 - day 65	.9 1,810
50-year 5,310		-	.7 1,040
¹ 100-year 8,800		7-day 27	.1 582
		15-day 18	.9 362

 $^{^{\}mathrm{l}}\mathrm{From}$ curve drawn from other frequency points.

APPENDIX D

51

11055800 CITY CREEK NEAR HIGHLAND, CALIF.

Location.--Lat 34°08'38", long 117°11'16", in SE4SN4NN4 sec. 27, T. 1 N., R. 3 W., San Bernardino County, on right bank 0.6 mile upstream from Highland Avenue and 1.5 miles northeast of Highland.

Basin characteristics			Mean	flow
		(cu	bic feet	per second)
Area (A) , square miles	19.6			
Annual precipitation (P) ,		Ann	ual	9.6
in inches	32	Jan	uary	12.8
Channel length (L) , in		Feb	ruary	16.7
miles	8.8	Mar	c h	19.0
Channel slope (S) , in feet		Apr	il	18.8
per mile	359	Hay		8.7
Precipitation intensity		Jun	e	4.3
(I), in inches per hour	4.5	Jul	У	1.5
Forest cover (F), in percent	100	Aug	ust	.8
Elevation greater than		Sep	tember	.8
5,000 feet (E), in percent	23	0ct	ober	.8
Evapotranspiration (T) , in		Nov	ember	4.7
inches	60	Dec	ember	11.2
Flood frequency		Flood-	volume f	requency
(cubic feet per second)		(average o	ubic fee for peri	et per second .od)
2-year 208				
5-year 784			2 - yea	ır 50 - year
10-year 1,860				
25-year 4,490		1 - day	94.8	2,290
50-year 6,540		3-day	61.5	1,300
¹ 100-year 9,900		7-day	40.5	7 52
-		15-day	28.6	473

 $^{^{\}rm l}{\rm From}$ curve drawn from other frequency points.

11056500 LITTLE SAN GORGONIO CREEK MEAR BEAUMONT, CALIF.

Location.—Lat 34°01'45", long 116°56'43", in NM4SW4NM4 sec. 1, T. 2 S., R. 1 W., San Bernardino County, on downstream side of left abutment of bridge on Oak Glen Road, 3.0 miles upstream from Wallace Creek, and 7 miles north of Beaumont.

Basin charac	cteristics		Mean	flor
•		(cub	ic feet	per second)
Area (A), square m	iles 3.23	·		,
Annual precipitation		Annu	al	1.6
in inches	30	Janu	arv	1.9
Channel length (L)	, in		ıary	2.1
miles	3. 0	Marc	•	2.3
Channel slope (S) ,	in feet	Apri	l	2.4
per mile	1,036	May		1.6
Precipitation inter	nsity	June		1.0
(I), in inches pe	er hour 4.0	July		.6
Forest cover (F),	In percent 99	Augus	st	.8
Elevation greater t		•	ember	1.0
5,000 feet (E),	in percent 73	Octo	er	.3
Evapotranspiration	(T), in	Nove	nber	.9
inches	57	Dece	nber	1.8
Flood free	juency	Flood-ve	olume fi	requency
(cubic feet pe				t per second
	•		or perio	-
2-year	33.0		•	•
5-year	122		2-year	r 50-year
10-year	265		-	·
25-year	693	1-day	8.	7 274
50-year	1,130	3-day	5.5	5 173
¹ 100-year	1,890	7 - day	3.7	7 193

15-day

69.0

2.7

¹From curve drawn from other frequency points.

11057000 SAN TIMOTEO CREEK NEAR REDLANDS, CALIF.

Location.—Lat 34°01°59", long 117°12'29", in NE NE NE Sec. 5, T. 2 S., R. 3 W., on downstream side of right abutment of county highway bridge, 2.0 miles southwest of Redlands and 3.4 miles downstream from Yucaipa Creek.

Basin cha	racteristics	Mean flow		.OV
		(cul	oic feet pe	r second)
Area (A), square	miles 119		_	
Annual precipita	tion (P),	Annı	ıal	9.6
in inches	17	Janu	ıary	10.0
Channel length (Z), in	Febr	uary	43.5
miles	19.0	Marc	ch	48.1
Channel slope (S), in feet	Apri	11	27.5
per mile	210	May		5 .7
Precipitation in	tensity	June	<u> </u>	1.1
(I), in inches	per hour 4.5	July	7	. 2
Forest cover (F)	, in percent 66	Augt	ıst	.5
Elevation greate	r than	Sept	ember	.3
5,000 feet (E)	, in percent 4.3	Octo	ber	.1
Evapotranspiration	on (T) , in	Nove	ember	4.2
inches	55	Dece	ember	20.1
Flood f	requency	Flood-v	olume freq	uency
(cubic feet	per second)	(average cu	bic feet por period)	
2-year	862		-	
5-year	3,630		2-year	50-year
10-year	5,930			•
25-year	11,500	1-day	147	5,320
50-year	17,900	3-day	74.0	3,120
¹ 100 - year	24,900	7-day	39.6	-
		15-day	23.4	913

 $^{^{1}\}mbox{From curve drawn from other}$ frequency points.

11058500 EAST TWIN CREEK NEAR ARROWHEAD SPRINGS, CALIF.

Location.--Lat 34°10'45", long 117°15'53", in MANE NEW sec. 14, T. 1 N., R. 4 W., San Bernardino County, on right bank 100 feet upstream from Del Rosa Water Co.'s diversion dam, 0.5 mile south of Arrowhead Springs, and 1.0 mile downstream from Strawberry Creek.

Basin character	istics		`lean fl	.017
•		(cubi	c feet pe	r second)
Area (A) , square miles	8.80			
Annual precipitation (Annua	ıl	2.2
in inches	27	Janua	ıry	3. 9
Channel length (L) , in		Febru	ıary	5.7
miles	5.3	Harcl	ı	6.3
Channel slope (S) , in	feet	April	_	5.2
per mile	764	May		1.2
Precipitation intensit	у	June		. 4
(I), in inches per h		July		.1
Forest cover (F) , in p	ercent 98	Augus	t	.1
Elevation greater than		Septe	ember	. 1
5,000 feet (E), in p	ercent 7.7	Octob	er	.0
Evapotranspiration (T)	, in	Novem	ıber	.7
inches	60	Decen	ıber	2.5
Flood frequen	су	Flood-vo	olume freq	uency
(cubic feet per s	econd)	(average cul		
		fo	or period)	
2-year	96.2			
5-year	357		2-year	50-year
10-year	713			
25 - year 1	,620	1-day	35.7	777
	, 580	3 - day	21.5	462
¹ 100-year 3	,800	7-day	13.3	252
		15-day	8.7	156

 $^{^{\}mathrm{l}}\mathrm{From}$ curve drawn from other frequency points.

APPENDIX D

11058600 WATERMAN CANYON CREEK NEAR ARROWHEAD SPRINGS, CALIF.

Location.—Lat 34°11'36", long 117°16'25", in NEWW4NV4 sec. 11, T. 1 N., R. 4 W., San Bernardino County, on left bank 0.8 mile northwest of Arrowhead Springs and 1.3 miles north of San Bernardino National Forest boundary.

Basin char	acteristics		Mean fl	OT:1
		(cu	bic feet per	r second)
Area (A), square	miles 4.65	·	•	·
Annual precipitat:	ion (P) ,	Ann	ua1	3.2
in inches	35	Jan	uary	4.4
Channel length (L), in		ruary	4.6
miles	3.6	Mar	ch	5.3
Channel slope (S)	, in feet	Apr	il	5.4
per mile	622	May		3.1
Precipitation int	ensity	Jun	e	1.9
(I), in inches	per hour 5.0	Ju1	У	.9
Forest cover (F) ,	in percent 101	Aug	ust	.1
Elevation greater	than	Sep	tember	.1
5,000 feet (E),	in percent 1.0	Oct	ober	• 5
Evapotranspiration	n(T), in	Nov	rember	1.8
inches	60	Dec	ember	3.2
Flood fr	equency	Flood-	volume freq	uency
(cubic feet			ubic feet p	-
			for period)	
2-year	61.0			
5-year	217		2-year	50 - year
10-year	488			
25-year	1,220	1-day	52.0	484
50 - year	1,870	3 - day	33.7	3 00
¹ 100 - year	2,7 00	7 - day	20.9	201
		15 - day	13.4	132

 $^{^{\}rm 1}{\rm From}$ curve drawn from other frequency points.

11062000 LYTLE CREEK NEAR FONTANA, CALIF.

Location.--Lat 34°12'44", long 117°27'25", in SE¹NV¹SE¹4 sec. 36, T. 2 N., R. 6. W., San Bernardino County, on right bank 75 feet upstream from highway bridge, 0.7 mile upstream from right tributary, and 8 miles north of Fontana.

Basin char	racteristics	Mean flow		
		(cubic	feet p	er second)
Area (A) , square	miles 46.3		_	
Annual precipitat	tion (P) ,	Annual		36.9
in inches	33	Januar	У	43.1
Channel length (5),	Februa	ry	53.3
in miles	15.1	March		63.8
Channel slope (S)), in feet	April		52.0
per mile	335	∐ay		47.7
Precipitation in		June		33.0
(I), in inches		July		16.7
Forest cover (F)		August		7.7
Elevation greater		Septem	ber	6.5
5,000 feet (E)		Octobe	r	13.2
Evapotranspiration	on (T) , in	Novemb	er	23.8
inches	72	Decemb	er	31.5
Flood fr	requency	Flood-vol	ume fre	quency
(cubic feet	per second)	(average cubi	c feet	per second
		for	period)
2-year	702			
5-year	2,520		2-year	50-year
10-year	5 , 550			
25-year	10,900	1-day	350	5,620
50-year	15,100	3-day	240	3,120
¹ 100 - year	19,500	7 - day	165	1,900
		15 - day	122	1,130

 $^{^{\}rm 1}{\rm From}$ curve drawn from other frequency points.

11063000 CAJON CREEK NEAR KEENBROOK, CALIF.

Location.--Lat 34°16'01", long 117°27'33", in SE4SW4SE4 sec. 12, T. 2 N., R. 6 W., San Bernardino County, on left bank 1,300 feet upstream from Lone Pine Creek and 1.2 miles north of Keenbrook.

Basin characteristics			Mean flow
		(cubic	feet per second)
Area (A), square miles	40.6		•
Annual precipitation (P),		Annua1	7.2
in inches	19	Januar	y 8.5
Channel length (L) , in		Februa	ry 21.0
miles	13.6	March	23.7
Channel slope (S) , in feet		April	9.6
per mile	17 4	May	5.2
Precipitation intensity		June	2.2
(I), in inches per hour	6.0	July	• 9
Forest cover (F), in percent	99	August	1.0
Elevation greater than		Septem	ber .9
5,000 feet (E), in percent	13	Octobe	er .6
Evapotranspiration (T) , in		Novemb	er 3.0
inches	72	Decemb	6.1
Flood frequency		Flood-vol	ume frequency
(cubic feet per second)		(average cubi	c feet per second period)
2-year 608			
5-year 2,180			2-year 50-year
10-year 3,110			
25-year 4,610		1-day	121 3,440
50-year 7,390		3 - day	67.1 1,820
¹ 100-year 12,000		7-day	39.3 677
		15- day	24.5 380

 $^{^{\}rm 1}{\rm From}$ curve drawn from other frequency points.

11063500 LONE PINE CREEK NEAR KEENBROOK, CALIF.

Location.—Lat 34°15°59", long 117°27'47", in SE4SE4SW4 sec. 12, T. 2 N., R. 6 W., San Bernardino County, on right bank 50 feet upstream from The Atchison, Topeka and Santa Fe Railway Co. bridge, 150 feet upstream from mouth, and 1.1 miles north of Keenbrook.

Basin charact	eristics		Mean	flow
		((cubic feet	per second)
Area (A) , square mil	es 15.1			
Annual precipitation	(P),	Ar	nnual	3.3
in inches	19	Ja	anuary	3.5
Channel length (L) ,	in	F€	ebruary	7.5
miles	11.0	Ma	arch	3.4
Channel slope (S) , i	n feet	AŢ	oril	3.4
per mile	366	Ma	ay	2.8
Precipitation intens	sity	Jι	ine	2.0
(I), in inches per	hour 6.0	Jı	11y	2.0
Forest cover (F), in	percent 99	Αι	ıgust	4.0
Elevation greater th	ian	Se	eptember	3.6
5,000 feet (E), in	percent 45	00	ctober	1.5
Evapotranspiration ((T), in	No	ovembe r	1.2
inches	72	De	ecember	2.5
Flood frequ	iency	Flood	l-volume fr	equency
(cubic feet per	second)			per second
2-year	333		-	•
5-year	1,080		2-year	50-year
1∂-year	1,410			-
25-year	1,730	1-day	34.3	1,110
50-year	2,930	3-day	19.1	623
¹ 100-year	4,100	7-day	11.7	247
		15-day	7.6	141

 $^{^{1}\}mbox{From curve drawn from other}$ frequency points.

APPENDIX D

59

11063680 DEVIL CANYON CREEK NEAR SAN BERNARDINO, CALIF.

Location.--Lat 34°12'12", long 117°20'02", in Muscupiabe Grant, San Bernardino County, on right bank 1.0 mile downstream from confluence of East Fork and West Fork and 7.0 miles northwest of San Bernardino.

Basin characteristics			Mean fl	OM.
		(c	ubic feet pe	r second)
Area (A), square miles	5.61			
Annual precipitation (P),		An	mual	2.1
in inches	26	Ja	inuary	2.3
Channel length (L) , in		Fe	bruary	4.2
miles	3.9	Ma	ırch	4.8
Channel slope (S) , in feet		Ap	ri1	2.9
per mile	801	Ma	ıy	2.0
Precipitation intensity		Ju	ine	1.1
(I), in inches per hour	6.0	Ju	11y	.6
Forest cover (F) , in percent	99	Au	igust	.5
Elevation greater than		Se	eptember	. 4
5,000 feet (E), in percent	3.9	00	tober	. 4
Evapotranspiration (T) , in		No	ovember	1.3
inches	60	De	ecember	2.2
Flood frequency		Flood	d-volume freq	uency
(cubic feet per second)		(average	cubic feet p	er second
•			for period)	
2-year 90.6				
5-year 314			2-year	50 - year
10 - year 517				
25-year 989		1-day	23.8	45 9
50-year 1,620		3 - day	14.1	278
¹ 100-year 2,390		7-day	8.5	
		15 - day	5.4	92.6

¹From curve drawn from other frequency points.

11067000 DAY CREEK NEAR ETIWANDA, CALIF.

Location.—Lat 34°11'06", long 117°32'20", in NW4NW4SW4 sec. 8, T. 1 N., R. 6 W., San Bernardino County, on left bank 0.5 mile downstream from confluence of two main forks and 4 miles north of Etiwanda.

Basin charac	teristics		Mean f	low
		(cub	ic feet p	er second)
Area (A) , square mi	les 4.59	•		
Annual precipitation		Annu	al	3.7
in inches	35	Janu	arv	4.0
Channel length (L) ,	in		uary	5.3
miles	4.2	Marc	•	6.1
Channel slope (S) ,		Apri		5.4
per mile	1,466	May		4.7
Precipitation inten	•	June		3.8
(I), in inches pe		July		3.1
Forest cover (F) , i		Augu		6.5
Elevation greater t	•		ember	6.0
5,000 feet (E) , i		Octo		1.7
Evapotranspiration		Nove		2.4
inches	57	Dece		4.1
				. • -
Flood freq	uency	Flood-v	olume fre	equency
(cubic feet pe		(average cu		•
•	·		or period	_
2-year	88.6		·	•
5-year	293		2-year	50-year
10-year	593		J	,
25-year	1,200	1-day	18.3	445
50-year	1,850	3-day	12.2	281
¹ 100-year	2,700	7-day	8.5	198
J	•	15-day	6.3	130

¹From curve drawn from other frequency points.

11-073000 SAN ANTONIO CREEK NEAR CLAREMONT, CALIF.

Location.--Lat 34°12'58", long 117°40'04", in SE4SW4NE4 sec. 36, T. 2 N., R. 8 W., Los Angeles County, on right bank 0.5 mile upstream from Southern California Edison Co.'s Sierra powerplant, and 8.8 miles northeast of Claremont.

Basin characteristics		Mean flow	7
		(cubic feet per	second)
Area (A) , square miles	16.6		
Annual precipitation (P) ,		Annual	11.0
in inches	34	January	12.4
Channel length (L) , in		February	18.7
miles	6.1	March	22.0
Channel slope (S) , in feet		April	18.8
per mile	722	May	12.8
Precipitation intensity		June	6.2
(I), in inches per hour	5.8	July	2.3
Forest cover (F) , in percent	99	August	5.1
Elevation greater than		September	5.1
5,000 feet (E), in percent	87	October	1.2
Evapotranspiration (T) , in		November	8.9
inches	58.5	December	13.0
Flood frequency		Flood-volume freque	ency
(cubic feet per second)		(average cubic feet per	
		for period)	
2-year 201			
5 - year 752		2-year	50-year
10-year 1,670			
25-year 4,130		1-day 64.2	1,950
50-year 5,970		3-day 43.0	1,130
¹ 100-year 8,400		7-day 29.7	701
		15-day 22.3	447

¹From curve drawn from other frequency points.

11073470 CUCAMONGA CREEK NEAR UPLAND, CALIF.

Location.--Lat 34°10'26", long 117°37'51", in SV4SE4NE4 sec. 17, T. 1 N., R. 7 W., San Bernardino County, on right bank 0.5 mile downstream from unnamed tributary, and 5.3 miles north of Upland.

Basin characteristics			Mean fl	O//
		(cubi	c feet pe	r second)
Area (A), square miles	10.1		_	
Annual precipitation (P),		Annua	1	7.1
in inches	35	Janua	ry	8.2
Channel length (L) , in		Febru	ary	11.2
miles	5.6	March		13.0
Channel slope (S) , in feet		April		12.1
per mile	810	May		8.0
Precipitation intensity		June		4.7
(I), in inches per hour	5.5	July		2.2
Forest cover (F), in percent	100	Augus	t	3.3
Elevation greater than	ter than September		3.1	
5,000 feet (E), in percent	51	Octob	er	1.2
Evapotranspiration (T), in		Novem	November	
inches	57.5	Decem	ber	8.3
Flood frequency		Flood-vo	lume freq	uency
(cubic feet per second)		(average cub	ic feet p	er second
•			r period)	
2-year 141			-	
5-year 503			2-year	50-year
10-year 1,120			-	
25-year 2,630		1-day	43.8	1,150
50-year 3,870		3-day	29.4	686
¹ 100-year 5,400		7-day	20.2	443
-		15-day	14.9	286

 $^{^{\}rm l} \, {\rm From} \,$ curve drawn from other frequency points.

11080500 EAST FORK SAN GABRIEL RIVER NEAR CAMP BONITA, CALIF.

Location.--Lat 34°14'09", long 117°48'18", in NE\NE\ sec. 27, T. 2 N., R. 9 W., Los Angeles County, on right bank 1,600 feet upstream from mouth of Graveyard Canyon, 2.5 miles upstream from confluence with West Fork, and 2.5 miles west of Camp Bonita.

Basin characteristics		Me	an flo	O//
		(cubic fe	et pe	r second)
Area (A) , square miles	84.6			
Annual precipitation (P) ,		Annual		58.8
in inches	31	January		62.8
Channel length (L), in		February		90.9
miles	16.6	March		109
Channel slope (S) , in feet		April		81.3
per mile	330	May		79.3
Precipitation intensity		June		42.4
(I) , in inches per hour	6.0	July		16.0
Forest cover (F) , in percent	95	August		5.5
Elevation greater than		September		4.1
5,000 feet (E), in percent	31	0ctober		12.6
Evapotranspiration (T) , in		November		50.2
inches	72	December		52.5
Flood frequency		Flood-volume	freq	uency
(cubic feet per second)		(average cubic f	eet p	er second
		for pe	riod)	
2-year 984				
5-year 3,790		2-у	ear	50-year
10-year 8,390				
25-year 18,300		1-day	661	10,800
50-year 24,800		3-day	440	5,770
¹ 100-year 35,000		7 - day	290	3,170
		15-day	207	1,930

¹From curve drawn from other frequency points.

11084000 ROGERS CREEK NEAR AZUSA, CALIF.

Location.--Lat 34°09'55", long 117°54'20", in NWANW4 sec. 23, T. 1 N., R. 10 W., on left bank 0.5 mile upstream from mouth and 2.2 miles north of Azusa.

Basin characte	ristics		Mean f1	O/A
•		(cub:	lc feet pe	r second)
Area (A), square mile	6.64			
Annual precipitation		Annua	1	2.5
in inches	30	Janua	ıry	3.6
Channel length (L) , in	n	Febru	ıary	7.0
miles	5.8	Marcl	1	8.1
Channel slope (S) , in	feet	Apri:	L	5.1
per mile	375	May		1.8
Precipitation intensi	ty	June		.9
(I), in inches per		July		.4
Forest cover (F) , in		Augus	st	.2
Elevation greater than	-	Septe	ember	.2
5,000 feet (E) , in		Octol		.2
Evapotranspiration (T	=	Nove	nber	.8
inches	57	Decer	ber	2.9
Flood freque	nev	Flood-ye	olume freq	uency
(cubic feet per	-	(average cul	-	•
(cdbic reet per	becond,		or period)	
2-year	168			
5-year	530		2-year	50-year
10-year	893			
25-year	1,410	1-day	44.3	645
50-year	2,220	3-day	27.0	387
¹ 100-year	3,150	7-day	16.1	224
		15-day	10.0	142

 $^{^{\}rm l}{\rm From}$ curve drawn from other frequency points.

11084500 FISH CREEK NEAR DUARTE, CALIF.

Location.--Lat 34°09'57", long 117°55'24", in SV4SV4SV4 sec. 15, T. 1 N., R. 10 W., Los Angeles County, on left bank 0.8 mile upstream from mouth of canyon and 3.2 miles northeast of Duarte.

Basin characteristics			Mean flow		
		(cubic	feet per	c second)	
Area (A), square miles	6.36				
Annual precipitation (P) ,		Annual		2.5	
in inches	30	Januar	У	3.4	
Channel length (L) , in		Februa	ry	5.9	
miles	6.0	March		6.8	
Channel slope (S) , in feet		April		4.9	
per mile	511	May		2.0	
Precipitation intensity		June		1.2	
(I), in inches per hour	6.0	July		.6	
Forest cover (F) , in percent	101	August		.3	
Elevation greater than		Septem	September		
5,000 feet (E), in percent	1.0	Octobe	October		
Evapotranspiration (T) , in		Novemb	November		
inches	56	Decemb	December 3		
Flood frequency		Flood-vol	ume fredi	uencv	
(cubic feet per second)		(average cubi	-	•	
(Cabic feet per second)			period)	er second	
2-year 138					
5-year 443			2-year	50-year	
10-year 801					
25-year 1,350		1-day	40.0	614	
50-year 2,130		3 - day	24.3	369	
¹ 100-year 2,850		7 - day	14.5	215	
		15 - day	9.0	136	

 $^{^{\}rm l}{\rm From}$ curve drawn from other frequency points.

11086500 LITTLE DALTON CREEK NEAR GLENDORA, CALIF.

Location.—Lat 34°10'03", long 117°50'15", in NE4SE4SE4 sec. 17, T. 1 N., R. 9 W., Los Angeles County, on left bank 0.2 mile upstream from Angeles National Forest boundary and 2.6 miles northeast of Glendora.

Basin characteristics		Mean flow
		(cubic feet per second)
Area (A), square miles	2.72	
Annual precipitation (P) ,		Annual 1.0
in inches	29	January 1.5
Channel length (L) , in		February 2.3
miles	3.6	March 2.6
Channel slope (S) , in feet		April 1.8
per mile	524	May .7
Precipitation intensity		June .4
(I), in inches per hour	6.0	July .3
Forest cover (F) , in percent	: 101	August .1
Elevation greater than		September .1
5,000 feet (E), in percent	: 1.0	October .1
Evapotranspiration (T), in		November .3
inches	57	December 1.1
Flood frequency		Flood-volume frequency
(cubic feet per second))	(average cubic feet per second
		for period)
2-year 62.3	3	
5-year 196		2-year 50-year

1-day

3-day

7-day

15-day

227

143

35.6 54.7

16.5

9.9

5.9

3.7

330

559

928

1,350

10-year

25-year

50-year

¹100-year

 $^{^{\}mathrm{l}}\mathtt{From}$ curve drawn from other frequency points.

11093000 PACOIMA CREEK NEAR SAN FERNANDO, CALIF.

Location.--Lat 34°20'07", long 118°23'50", in SE4NE4 sec. 24, T. 3 N., R. 15 N., Los Angeles County, on right bank 500 feet downstream from Pacoima Dam, 0.3 mile upstream from mouth of canyon, and 4 miles northeast of San Fernando.

Basin characte	ristics		Mean fl	.V 7 O.
		(cub	ic feet pe	r second)
Area (A) , square mile		·	1	,
Annual precipitation	(P),	Annu	a1	5.9
in inches	25	Janu	arv	3.9
Channel length (L) , i	n		uary	18.7
miles	21.4	Marc	-	21.2
Channel slope (S) , in	feet	Apri	1	17.6
per mile	157	May		3.5
Precipitation intensi	ty	June		1.8
(I), in inches per		Ju 1 y		.9
Forest cover (F) , in	percent 69			1.0
Elevation greater than				.8
5,000 feet (E), in percent 11 October			.4	
Evapotranspiration (T) , in		November 1		1.0
inches	59	Dece		9.3
Flood freque	nev	771 and	.1 £	
(cubic feet per		Flood-volume frequency (average cubic feet per second		
(ouble feet per	occond)			er second
2-year	600	L	or period)	
5-year	1,930		2 ***	EO
10-year	3,470		2-year	50-year
25-year	4,680	1_dox	96 6	1 520
50-year	7 , 120	1-day	36.6	1,520
¹ 100-year	8,000	3-day	51.0	976
100 year	0,000	7-day	31.0	737
		15 - day	20.3	439

 $^{^{\}mathrm{l}}$ From curve drawn from other frequency points.

11094000 TUJUNGA CREEK BELOW MILL CREEK, NEAR COLBY RANCH, CALIF.

Location.--Lat 34°18'33", long 118°08'40" (unsurveyed), Los Angeles County, Angeles National Forest, on left bank 500 feet downstream from Mill Creek and 2 miles west of Colby Ranch.

Basin characteristics			Mean	flow
		(cubic	feet	per second)
Area (A), square miles	64.9			-
Annual precipitation (P) ,		Annual		15.8
in inches	24	Januar	У	23.3
Channel length (L) , in		Februa	ry	41.4
miles	13.8	March	•	47.4
Channel slope (S) , in feet		April		29.4
per mile	100	ិíay		10.8
Precipitation intensity		June		3.4
(I), in inches per hour	5.0	July		.6
Forest cover (F), in percent	101	August		.6
Elevation greater than		Septem	ber	.6
5,000 feet (E), in percent	38	Octobe	r	.4
Evapotranspiration (T) , in		Novemb	er	7.5
inches	70	Decemb	er	15.1
Flood frequency		Flood-vol	ume f:	requency
(cubic feet per second)		(average cubi		
		_	perio	_
2-year 586			•	·
5-year 2,350			2-year	r 50-year
10-year 4,610			•	
25-year 10,000		1-day	244	7,300
50-year 14,700		3-day	143	3,770
¹ 100-year 24,500		7-day	93.2	-
		15-day	63.4	

 $^{^{\}mathrm{l}}\mathrm{From}$ curve drawn from other frequency points.

11094500 TUJUNGA CREEK NEAR COLBY RANCH, CALIF.

Location.—Lat 34°18'22", long 118°09'24", just downstream from Lucas Creek, 400 feet upstream from crossing of Edison Road, 3.5 miles west of Colby Ranch, Los Angeles County, and 4 miles upstream from Big Tujunga Dam.

Basin charact	eristics		Mean i	flow
		(cubic feet p	per second)
Area (A) , square mil	es 67 . 5		•	•
Annual precipitation	(P) ,	A	nnual	22.9
in inches	28	J	anuary	35.8
Channel length (L) ,	in	F	ebruary	53.8
miles	21.8	M	larch	62.7
Channel slope (S) , i	n feet	A	pril	47.4
per mile	101	M	lay	16.9
Precipitation intens		J	une	7.7
(I), in inches per		J	uly	2.2
Forest cover (F) , in		A	ugust	1.2
Elevation greater th		S	September	
5,000 feet (E) , in	percent 38	O	October	
Evapotranspiration (T) , in November		lovember	7.4	
inches	69	D	ecember	23.0
Flood frequ	ency	Floo	d-volume fre	equency
(cubic feet per	second)		cubic feet	
			for period	
2-year	879			
5-year	3,220		2-year	50-year
10-year	6,880			_
25-year	12,800	1-day	347	8,320
50-year	18,000	3-day	221	
¹ 100 - year	29,000	7-day	144	-
		15-day	101	1,280

 $^{^{\}rm l} \, {\rm From} \,$ curve drawn from other frequency points.

11095500 TUJUNGA CREEK NEAR SUNLAND, CALIF.

Location.--Lat 34°18'02", long 118°16'04", in SW4NW4SW4 sec. 32, T. 3 N., R. 13 W., Los Angeles County, on left bank 1,000 feet upstream from Gold Canyon, 2 miles upstream from mouth of canyon, and 4 miles northeast of Sunland.

Basin characteristics		Mean flow			
	4	(cubi	c feet pe	r second)	
Area (A), square	miles 106				
Annual precipitat		Annua	L	36.6	
in inches	29	Janua	ry	54.5	
Channel length (I	(), in	Febru	ary	90.3	
miles	25.4	March		106	
Channel slope (S)	, in feet	April		83.4	
per mile	109	May		28.5	
Precipitation int	ensity	June		11.0	
(I), in inches	per hour 5.0	July		2.5	
Forest cover (F),	-	August		1.5	
Elevation greater than		September		1.3	
5,000 feet (E), in percent 30		October		1.4	
Evapotranspiration	=	November 1		13.5	
inches	66	Decem	ber	41.9	
Flood fi	requency	Flood-vo	lume frec	luency	
(cubic feet		(average cub	ic feet p	et per second	
(0000	,		r period)		
2-year	1,210				
5-year	4,600		2-year	50-year	
10-year	10,500				
25-year	20,900	1-day	541	14,300	
50-year	28,500	3-day	346	•	
^l 100 - year	46,500	7-day	223	3,580	
-		15 - day	157	2,150	

 $^{^{\}mathrm{l}}\mathrm{From}$ curve drawn from other frequency points.

11096500 LITTLE TUJUNGA CREEK NEAR SAN FERNANDO, CALIF.

Location.--Lat 34°16'28", long 118°22'18", in Tujunga Grant, Los Angeles County, on downstream side of Foothill Boulevard bridge, 4 miles east of San Fernando.

Basin characteristic	s	Mean	flow
		(cubic feet	per second)
Area (A) , square miles	21.1	,	, ,
Annual precipitation (P) ,		Annual	5.2
in inches	27	January	7.8
Channel length (L) , in		February	15.3
miles	6.5	March	17.4
Channel slope (S) , in feet	- • -	April	13.4
per mile	212	May	
Precipitation intensity		June	3.3
(I), in inches per hour	5.0		.9
Forest cover (F) , in percent		July	. 2
Elevation greater than		August	.1
5,000 feet (E), in percent	1.0	September	.0
Evapotranspiration (T) , in	1.0	October	.1
inches	F 7	November	2.6
inches	57	December	7.4
Flood frequency		Flood-volume fre	equency
(cubic feet per second))	(average cubic feet	
		for period	
2-year 192		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5-year 761		2-year	50-year
10-year 1,550		<i>- y - u - z</i>	Jo year
25-year 3,850		1 - day 112	1,890
50-year 5,840		3-day 66.0	
¹ 100-year 9,600		7-day 38.1	,
,		15-day 23.3	374

 $^{^{\}rm l} {\tt From}$ curve drawn from other frequency points.

11098000 ARROYO SECO NEAR PASADENA, CALIF.

Location.--Lat 34°13'20", long 118°10'36", in NW4NW4NE4 sec. 31, T. 2 N., R. 12 W., Los Angeles County, on right bank 1.5 miles upstream from Millard Canyon and 5.5 miles northwest of Pasadena.

Basin characteristics			Mean f1	.OW
		(cubic	: feet pe	er second)
Area (A), square miles	16.6			
Annual precipitation (P) ,		Annual	Ĺ	4.6
in inches	28	Januar	. y	6.9
Channel length (L) , in		Februa	ary	14.5
miles	11.5	March		16.8
Channel slope (S) , in feet		April		11.0
per mile	235	May		3.0
Precipitation intensity		June		1.5
(I), in inches per hour	6.0	July		.6
Forest cover (F) , in percent	100	August	<u> </u>	1.1
Elevation greater than		Septer	nber	.9
5,000 feet (E), in percent	12	Octobe	≥r	. 2
Evapotranspiration (T) , in		Novemb	er	1.2
inches	57	Decemb	er	6.1
Flood frequency		Flood-vo	Lume freq	luency
(cubic feet per second)		(average cub:	_	
		for	r period)	
2-year 360			_	
5-year 1,170			2-year	50-year
10-year 2,090				
25-year 3,190		1-day	57.0	1,710
50-year 4,850		3-day	34.8	971
¹ 100-year 7,600		7-day	21.8	511
		15- day	14.6	314

 $^{^{\}rm l}{\rm From}$ curve drawn from other frequency points.

11100000 SANTA ANITA CREEK NEAR SIERRA MADRE, CALIF.

Location.--Lat 34°11'30", long 118°00'59", in SW4NE4NE4 sec. 10, T. 1 N., R. 11 W., Los Angeles County, on right bank at head of Hermits Falls, 0.9 mile upstream from Big Santa Anita Dam, and 3 miles northeast of Sierra Madre.

Basin characteristics Mea		Mean f1	OW	
		(cub:	ic feet pe	r second)
Area (A), square m	iles 9.7			
Annual precipitati	on (P),	Annu	a1	5.8
in inches	33	Janua	ary	7.0
Channel length (L)	, in	Febr	ıary	11.9
miles	4.6	March	ı	14.1
Channel slope (S) ,	in feet	Apri	L	9.8
per mile	671	May		6.0
Precipitation inte	nsity	June		2.9
(I), in inches p	er hour 7.0	July		1.1
Forest cover (F) , in percent 101		Augus	st	1.0
Elevation greater than		September		. 8
5,000 feet (E),	eet (E) , in percent 5.4 October		.6	
Evapotranspiration (T) , in		November		4.1
inches	58.5	Dece	nber	6.5
Flood fre	quency	Flood-ve	olume freq	uency
(cubic feet p	er second)	(average cul	oic feet p or period)	
2-year	162			
5-year	570		2-year	50-year
10-year	1,090			
25-year	2,340	1-day	62.1	1,070
50-year	3,500	3-day	40.0	633
^l 100-year	5,100	7-day	25.5	386
		15-day	17.2	247

¹From curve drawn from other frequency points.

11100500 LITTLE SANTA ANITA CREEK NEAR SIERRA MADRE, CALIF.

Location.--Lat 34°11'13", long 118°02'35", in SE4SW4NW4 sec. 9, T. 1 N., R. 11 W., on right bank 1.3 miles upstream from Sierra Madre Dam and 2 miles north of Sierra Madre.

Basin chara	acteristics		Mean flow		
		(cub:	c feet pe	r second)	
Area (A), square	miles 1.84				
Annual precipitation (P),		Annual 1.2			
in inches	35	Janua	January 1.6		
Channel length (L) , in		Febr	February 2.3		
miles	2.2	March 2.7		2.7	
Channel slope (S)	, in feet	Apri1 2.1			
per mile	892	May 1.0		1.0	
Precipitation int	ensity	June	June .6		
(I), in inches per hour 7.0		July .3			
Forest cover (F) ,	in percent 101	Augus	August .2		
Elevation greater	than	Septo	September .2		
5,000 feet (E),	in percent 1.5	Octo	October .2		
Evapotranspiration	n (T), in	Nove	November .6		
inches	55	Dece	nber	1.3	
Flood frequency		Flood-volume frequency			
(cubic feet		(average cubic feet per second			
		f	or period)		
2-year	42.8				
5-year	136		2-year	50-year	
10-year	246				
25 - year	488	1 - day	14.1	168	
50-year	788	3-day	9.0	110	
^l 100 - year	1,150	7-day	5.7	78.1	
		15- day	3.7	52.0	

 $^{^{\}rm l} \, {\rm From} \,$ curve drawn from other frequency points.

11101000 EATON CREEK NEAR PASADENA, CALIF.

Location.--Lat 34°11'37", long 118°06'13", in SW4SE4SE4 sec. 2, T. 1 N., R. 12 W., on right bank at mouth of canyon just upstream from bridge on old Mount Wilson toll road, and 4.5 miles northeast of Pasadena.

Basin characteristics		Mean flow			
		(6	cubic feet pe	r second)	
Area (A) , square miles	6.47				
Annual precipitation (P),		Aı	nnual	2.4	
in inches		Ja	anuary	3.1	
Channel length (L) , in		Fe	ebruary	6.5	
miles	5.8	Ma	arch	7.5	
Channel slope (S) , in feet		Aj	oril	4.5	
per mile		Ma	May		
Precipitation intensity		Jı	une	1.1	
(I), in inches per hour		Jı	uly	. 7	
Forest cover (F) , in percent		Aı	August		
Elevation greater than	Se	September 1.			
5,000 feet (E) , in percent 1		Oc	October		
Evapotranspiration (T) , in	No	November .9			
inches	55.5	De	ecember	3.0	
Flood frequency		F1000	Flood-volume frequency		
(cubic feet per second)	(average	(average cubic feet per second			
166			for period)		
2-year 166			0	5 0	
5-year 522			2-year	50-year	
10-year 855		1 1	00.0	(10	
25-year 1,320		1-day	22.2	610	
50-year 2,090		3-day	13.6	366	
¹ 100-year 2,500		7-day	8.6	207	
		15-day	5.8	130	

 $^{^{\}rm l}{\rm From}$ curve drawn from other frequency points.