Middle Lacustrine Unit

- Based on elog signatures and drill cuttings. Elogs show an increase in resistivity below the Middle Lacustrine Unit. These signatures "flatline" in this zone. Drill cuttings consist of predominantly fine material such as clay. This zone correlates laterally well together. The same four (4) packages may exist at MR-3 (04N04W12G04-13) but correlation is difficult.

- Only 3 elogs (wells) penetrate this zone to its' total depth. Elogs from MR-1 & MR-2 (04N03W30P02-11 & 04N04W13J02-10) show four (4) distinct packages of approximately 125' thickness each that correlate with the Middle Lacustrine Unit in the conceptual model described by Cox (2003). Additionally, this zone consists of the Ancestral Mojave River Deposits described in Izbicki (2008), Kolongoski (2003), and Stamos (2001) and the underlying Clay Middle Lacustrine Unit of Cox (2003).

- The ELOG "flat-lines" right here approximately 400 to 500'. This marks the top of this zone to the bottom. This zone is productive but is significantly less productive than the zone above. Zone testing yields water to wells prolifically. This zone seems to correlate well as main part of the Upper Fluvial Unit in the conceptual model described by Cox (2003).

Lower/Lesser Production Zone (decreases with depth)

- Based on elog signatures and drill cuttings. Elog signatures show a significant generalized declining trend from the top of the RW Wells. Elog signatures show a generalized consistency through this zone. The elogs do not generally decrease with depth but are (on average) stable. Drill cuttings are almost exclusively clean sands and gravels of Mojave River Deposits and the underlying Clay Middle Lacustrine Unit of Cox (2003).

- HRW Wells. Elog signatures show a generalized consistency through this zone. The elogs do not generally decrease with depth but are (on average) stable. Drill cuttings are almost exclusively clean sands and gravels of Mojave River Deposits and the underlying Clay Middle Lacustrine Unit of Cox (2003). Additionally, this zone consists of the Ancestral Mojave River Deposits described in Izbicki (2008), Kolongoski (2003), and Stamos (2001) and the underlying Clay Middle Lacustrine Unit of Cox (2003). This delineation correlates well to the Harold/Crowder in the vicinity of the RW Wells. Zone tests showed a sudden SC decrease of an order of magnitude at approximately 500 ft below ground surface (bgs). This SC decrease correlates well to a general step down in elog signature which likely marks the top of the RW Wells. Could this be the "effective basin bottom?"

High Production Zone

- Based on elog signatures and drill cuttings. This zone will not yield water to wells in any significant quantity if at all. Elog signatures "flatline" in this zone. Silty and clayey zones of the "lesser production zone." Need a deeper ELOG to answer.

- ELOGS show a "dip" and then a "bump up" at 1700'. The ELOG "flat-lines" right here approximately 400 to 500'. This marks the top of this zone to the bottom. This zone is productive but is significantly less productive than the zone above. Zone testing yields water to wells prolifically. This zone seems to correlate well as main part of the Upper Fluvial Unit in the conceptual model described by Cox (2003).

Less Productive Zone

- Based on elog signatures and drill cuttings. Elogs show an increase in resistivity below the Middle Lacustrine Unit. These signatures "flatline" in this zone. Drill cuttings consist of predominantly fine material such as clay. This zone correlates laterally well together. The same four (4) packages may exist at MR-3 (04N04W12G04-13) but correlation is difficult.

- Only 3 elogs (wells) penetrate this zone to its' total depth. Elogs from MR-1 & MR-2 (04N03W30P02-11 & 04N04W13J02-10) show four (4) distinct packages of approximately 125' thickness each that correlate laterally well together. The same four (4) packages may exist at MR-3 (04N04W12G04-13) but correlation is difficult.

Surface/Shallow Zone

- Based on elog signatures and drill cuttings. This zone includes "flatline" zones "flatline" in this zone. Silty and clayey zones of the "lesser production zone." Need a deeper ELOG to answer.

- ELOGS show a "dip" and then a "bump up" at 1700'. The ELOG "flat-lines" right here approximately 400 to 500'. This marks the top of this zone to the bottom. This zone is productive but is significantly less productive than the zone above. Zone testing yields water to wells prolifically. This zone seems to correlate well as main part of the Upper Fluvial Unit in the conceptual model described by Cox (2003).